Remote Sensing Technology and Application, Volume. 39, Issue 3, 527(2024)
Topic Model for High Resolution Remote Sensing Data Interpretation: A Review
[1] BLEI D M, NG A Y, Jordan M I. Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993-1022(2003).
[2] Xie Q Q, Tiwari P, Gupta D et al. Neural variational sparse topic model for sparse explainable text representation. Information Processing & Management, 58, 102614(2021).
[3] WANG Zhixue. Research on topic model text classification based on graph convolutional neural network[J]. Technology Innovation and Application, 13, 83-86(2023).
[4] ZHU Q Q, LEI Y, SUN X L et al. Knowledge-guided land pattern depiction for urban land use mapping: A case study of Chinese cities. Remote Sensing of Environment, 272, 112916(2022).
[5] LIU Shichuan. Exploration and practice on building recognition method of high resolution remote sensing image based on topic model. Geomatics & Spatial Information Technology, 45, 135-138(2022).
[6] LI Deren. Towards geo-spatial information science in big data era. Acta Geodaetica et Cartographica Sinica, 45, 379-384(2016).
[7] LI Q Y, ZHONG R F, DU X et al. TransUNetCD: A hybrid transformer network for change detection in optical remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-19(2022).
[8] ZHANG L P, ZHANG L F, DU B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geoscience and Remote Sensing Magazine, 4, 22-40(2016).
[9] LI X M, ZHONG Y F, SU Yu et al. Scene-change detection based on multi-feature-fusion latent dirichlet allocation model for high-spatial-resolution remote sensing imagery. Photogrammetric Engineering & Remote Sensing, 87, 669-681(2021).
[10] JARAMAGO J A G, PAOLETTI M E, HAUT J M et al. GPU parallel implementation of dual-depth sparse probabilistic latent semantic analysis for hyperspectral unmixing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12, 3156-3167(2019).
[11] ZHU Q Q, SUN X L. ZHONG Y F, 2019-2019(2019).
[12] LIU B, WANG H Y, WANG K Z et al. Scene interpretation for SAR images using supervised topic models;Proceedings of the 2011(2011).
[13] HUANG J S, GAO X D, JING W P. Research on remote sen-sing change monitoring of urban land types based on BOVW and SVM. Journal of Nanjing Forestry University, 47, 37-44(2023).
[14] QUELHAS P, MONAY F, ODOBEZ J M et al. A thousand words in a scene. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 1575-1589(2007).
[15] HOFMANN T. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 42, 177-196(2001).
[16] MA Yong. Research on intelligent evaluation system of sports training based on video image acquisition and scene semantics. Advances in Multimedia, 2022, 4726450(2022).
[17] LIU Y M, CHEN M. The knowledge structure and development trend in artificial intelligence based on latent feature topic model. IEEE Transactions on Engineering Management, 1-12(2023).
[18] ZHONG Y F, ZHU Q Q, ZHANG L P. Scene classification based on the multifeature fusion probabilistic topic model for high spatial resolution remote sensing imagery. IEEE Tran-sactions on Geoscience and Remote Sensing, 53, 6207-6222(2015).
[19] THAN K, HO T B. Fully sparse topic models.
[20] CLARKSON K L. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. ACM Transactions on Algorithms (TALG), 6, 1-30(2010).
[21] MIAO Y, GREFENSTETTE E, BLUNSOM P. Discovering discrete latent topics with neural variational inference.
[22] [22] DINGR, NALLAPATIRAMESH , XIANGB. Coherence-aware neural topic modeling[S]. arXiv preprint arXiv:180902687,2018. DOI: 10.48550/arXiv.1809.02687
[23] GEMP I, NALLAPATI R, DING R et al. Weakly semi-supervised neural topic models(2019).
[24] YANG Y, ZHANG K P, FAN Y Y. SDTM:A supervised bayesian deep topic model for text analytics. Information Systems Research, 34, 137-156(2023).
[25] FU X, HUANG K J, SIDIROPOULOS N D et al. Anchor-free correlated topic modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 1056-1071(2018).
[26] ZHANG H B, HUATING S, WU X Y. Topic model for graph mining based on hierarchical dirichlet process. Statistical Theory and Related Fields, 4, 66-77(2020).
[27] BLAIR S J, BI Y, MULVENNA M D. Aggregated topic models for increasing social media topic coherence. Applied Intelligence, 50, 138-156(2020).
[28] GAO Ziwei, SUN Weiwei, CHENG Penggen et al. Identify urban functional zones using multi feature latent semantic fused information of high-spatial resolution remote sensing image and POI data. Remote Sensing Technology and Application, 36, 618-626(2021).
[29] TANG H, SHEN L, QI YF et al. A multiscale latent Dirichlet allocation model for object-oriented clustering of VHR panchromatic satellite images. IEEE Transactions on Geoscience and Remote Sensing, 51, 1680-1692(2012).
[30] ZHANG T, YAN W J, SU C M et al. Accurate object retrieval for high-resolution remote-sensing imagery using high-order topic consistency potentials. International Journal of Remote Sensing, 36, 4250-4273(2015).
[31] KANG Z Z, YANG J T. A probabilistic graphical model for the classification of mobile LiDAR point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 143, 108-123(2018).
[32] FERNANDEZ-BELTRAN R, HAUT J M, PAOLETTI M E et al. Remote sensing image fusion using hierarchical multimodal probabilistic latent semantic analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 4982-4993(2018).
[33] CHENG G, GUO L, ZHAO T Y et al. Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA. International Journal of Remote Sensing, 34, 45-59(2013).
[34] POLATKAN G, ZHOU M, CARIN L et al. A Bayesian nonparametric approach to image super-resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 346-358(2014).
[35] MA A L, WAN Y T, ZHONG Y F et al. SceneNet: Remote sensing scene classification deep learning network using multi-objective neural evolution architecture search. ISPRS Journal of Photogrammetry and Remote Sensing, 172, 171-188(2021).
[36] MIAO W, GENG J, JIANG W. Multigranularity decoupling network with pseudolabel selection for remote sensing image scene classification. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-13(2023).
[37] LIENOU M, MAITRE H, DATCU M. Semantic annotation of satellite images using latent dirichlet allocation. IEEE Geoscience and Remote Sensing Letters, 7, 28-32(2009).
[38] ZHU Q Q, ZHONG Y F, ZHANG L P et al. Scene classification based on the fully sparse semantic topic model. IEEE Transactions on Geoscience and Remote Sensing, 55, 5525-5538(2017).
[39] HU F, XIA G S, YANG W et al. Mining deep semantic representations for scene classification of high-resolution remote sensing imagery. IEEE Transactions on Big Data, 6, 522-536(2019).
[40] LIU Y, MINH NGUYEN D, DELIGIANNIS N et al. Hourglass-shapenetwork based semantic segmentation for high resolution aerial imagery. Remote Sensing, 9, 522(2017).
[41] SHEN L, TANG H, CHEN Y H et al. A semisupervised latent dirichlet allocation model for object-based classification of VHR panchromatic satellite images. IEEE Geoscience and Remote Sensing Letters, 11, 863-867(2013).
[42] BOSCH A, ZISSERMAN A, MUNOZ X. Scene classification using a hybrid generative/discriminative approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 712-727(2008).
[43] XIAO Rui, GUO Yuxiang, LI Xinghua. Dynamic semantic extraction of urban blocks activity based on topic model. Remote Sensing Technology and Application, 38, 649-661(2023).
[44] RAJAGOPAL A, JOSHI G P, RAMACHANDRAN A et al. A deep learning model based on multi-objective particle swarm optimization for scene classification in unmanned aerial vehicles. IEEE Access, 8, 135383-135393(2020).
[45] ZHU Q Q, ZHONG Y F, ZHANG L P et al. Adaptive deep sparse semantic modeling framework for high spatial resolution image scene classification. IEEE Transactions on Geoscience and Remote Sensing, 56, 6180-6195(2018).
Get Citation
Copy Citation Text
Zhen LI, Qiqi ZHU, Yang LEI, Jiangqin WAN, Linlin WANG, Lei XU. Topic Model for High Resolution Remote Sensing Data Interpretation: A Review[J]. Remote Sensing Technology and Application, 2024, 39(3): 527
Category:
Received: Sep. 11, 2020
Accepted: --
Published Online: Dec. 9, 2024
The Author Email: Qiqi ZHU (zhuqq@cug.edu.cn)