APPLIED LASER, Volume. 43, Issue 10, 77(2023)

Current Status and Development on Additive Manufacturing with Blue Laser Source of High Reflectivity Metals

Ning Chenhong1,2, Yu Ting3, Chang Cheng2, Liu Min2, and Yan Xingchen2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(28)

    [1] [1] MURR L E, GAYTAN S M, RAMIREZ D A, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies[J]. Journal of Materials Science & Technology, 2012, 28(1): 1-14.

    [15] [15] COLOPI M, CAPRIO L, DEMIR A G, et al. Selective laser melting of pure Cu with a 1 kW single mode fiber laser[J]. Procedia CIRP, 2018, 74: 59-63.

    [19] [19] KNNING T P, DROVS S, STOIBER M, et al. High brightness fiber coupled diode lasers at 450 nm[C]//High-Power Diode Laser Technology ⅩⅤⅡ. San Francisco, USA: SPIE, 2019.

    [21] [21] SIVA PRASAD H, BRUECKNER F, VOLPP J, et al. Laser metal deposition of copper on diverse metals using green laser sources[J].The International Journal of Advanced Manufacturing Technology, 2020, 107(3/4): 1559-1568.

    [22] [22] YANG Y, GU D D, DAI D H, et al. Laser energy absorption behavior of powder particles using ray tracing method during selective laser melting additive manufacturing of aluminum alloy[J]. Materials & Design, 2018, 143: 12-19.

    [23] [23] SPISZ E W. Solar absorptances and spectral reflectances of 12 metals for temperatures ranging from 300 to 500 K[M]. [S.l.]National Aeronautics and Space Administration, 1969.

    [26] [26] ASANO K, TSUKAMOTO M, FUNADA Y, et al. Copper film formation on metal surfaces with 100 W blue direct diode laser system[J]. Journal of Laser Applications, 2018, 30(3): 032602.

    [27] [27] NAKAAZE T, TSUKAMOTO M, SATO Y, et al. Development of 100 W blue direct diode laser system for cladding of copper[C]//International Congress on Applications of Lasers & Electro-Optics. San Diego, California, USA: Laser Institute of America, 2016.

    [28] [28] HIGASHINO R, TSUKAMOTO M, SATO Y, et al. Development of 100 W class blue direct diode laser coating system for laser metal deposition[C]//SPIE LASE. Proc SPIE 10095, Laser 3D Manufacturing IV, San Francisco, California, USA:[s.n.]. 2017, 10095: 69-72.

    [29] [29] WANG H Z, KAWAHITO Y, YOSHIDA R, et al. Development of a high-power blue laser (445 nm) for material processing[J]. Optics Letters, 2017, 42(12): 2251-2254.

    [30] [30] SENGOKU M, TSUKAMOTO M, ASANO K, et al. Experimental investigation on temperature distribution of molten pool for copper with blue direct diode laser cladding[C]//International Congress on Applications of Lasers & Electro-Optics. Atlanta, Georgia, USA: Laser Institute of America, 2017.

    [31] [31] ASANO K, TSUKAMOTO M, SECHI Y, et al. Laser metal deposition of pure copper on stainless steel with blue and IR diode lasers[J]. Optics & Laser Technology, 2018, 107: 291-296.

    [32] [32] TAKENAKA K, SATO Y, ONO K, et al. Pure copper layer formation on stainless-steel and aluminum substrate with a multibeam laser metal deposition system with blue diode laser[J]. Journal of Laser Applications, 2021, 33(4): 042033.

    [33] [33] SATO Y, TSUKAMOTO M, SHOBU T, et al. In situ X-ray observations of pure-copper layer formation with blue direct diode lasers[J]. Applied Surface Science, 2019, 480: 861-867.

    [34] [34] TSUKAMOTO M. Developments of high power blue diode laser systems for laser metal deposition and welding of pure copper materials[C]//Proc SPIE 11262, High-Power Diode Laser Technology ⅩⅤⅢ, San Francisco, California, USA: SPIE LASE. 2020, 11262: 132-137.

    [35] [35] MASUNO S I, TSUKAMOTO M, TOJO K, et al. Metal Powder bed fusion additive manufacturing with 100W blue diode laser[C]//International Congress on Applications of Lasers & Electro-Optics. Atlanta, Georgia, USA. Laser Institute of America, 2017.

    [36] [36] HIGASHINO R, SATO Y, MASUNO S I, et al. Development of blue diode laser for additive manufacturing[C]//Laser 3D Manufacturing Ⅶ. San Francisco, USA: SPIE, 2020, 1127114-1127114-7.

    [37] [37] BRITTEN S, KRAUSE V. Industrial blue diode laser breaks 1 kW barrier[J]. PhotonicsViews, 2019, 16(2): 30-33.

    [38] [38] BAUMANN M, BALCK A, MALCHUS J, et al. 1000 W blue fiber-coupled diode-laser emitting at 450 nm[C]//Proc SPIE 10900, High-Power Diode Laser Technology ⅩⅤⅡ, San Francisco, California, USA: SPIE LASE. 2019, 10900: 10-21.

    [40] [40] LIANG F, ZHAO D G, LIU Z S, et al. GaN-based blue laser diode with 6.0 W of output power under continuous-wave operation at room temperature[J]. Journal of Semiconductors, 2021, 42(11): 112801.

    [41] [41] TIAN A Q, HU L, ZHANG L Q, et al. Design and growth of GaN-based blue and green laser diodes [J]. Science China Materials, 2020, 63(8): 1348-63.

    [44] [44] CHEN X H, REN D L, WU Y T, et al. kW-level high brightness blue diode laser[C]//Proc SPIE 11668, High-Power Diode Laser Technology XIX, [S.l.]. SPIE LASE. 2021, 11668: 74-79.

    [45] [45] SHIBATA T, TSUKAMOTO M, SATO Y, et al. Effect of input energy on densification for pure copper fabricated by SLM with blue diode laser[C]//Proc SPIE 10909, Laser 3D Manufacturing VI, San Francisco, California, USA: SPIE LASE. 2019, 10909: 165-170.

    [46] [46] HORI E, SATO Y, SHIBATA T, et al. Development of SLM process using 200 W blue diode laser for pure copper additive manufacturing of high density structure[J]. Journal of Laser Applications, 2021, 33(1): 012008.

    [47] [47] ONO K, TSUKAMOTO M, SATO Y, et al. Forming of pure copper rod by LMD method with blue diode lasers[C]//Laser 3D Manufacturing Ⅶ. San Francisco, USA. SPIE, 2020, 11271.

    [48] [48] BRITTEN S, OCYLOK S. Blues skies for copper cladding with 450nm[C]//Laser 3D Manufacturing Ⅵ. San Francisco, USA: SPIE, 2019, 109090C-109090C-8.

    [49] [49] YANG H H, WU J Y, WEI Q L, et al. Stable cladding of high reflectivity pure copper on the aluminum alloy substrate by an infrared-blue hybrid laser[J]. Additive Manufacturing Letters, 2022, 3: 100040.

    Tools

    Get Citation

    Copy Citation Text

    Ning Chenhong, Yu Ting, Chang Cheng, Liu Min, Yan Xingchen. Current Status and Development on Additive Manufacturing with Blue Laser Source of High Reflectivity Metals[J]. APPLIED LASER, 2023, 43(10): 77

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jun. 10, 2022

    Accepted: --

    Published Online: May. 23, 2024

    The Author Email:

    DOI:10.14128/j.cnki.al.20234310.077

    Topics