APPLIED LASER, Volume. 43, Issue 10, 77(2023)
Current Status and Development on Additive Manufacturing with Blue Laser Source of High Reflectivity Metals
[1] [1] MURR L E, GAYTAN S M, RAMIREZ D A, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies[J]. Journal of Materials Science & Technology, 2012, 28(1): 1-14.
[15] [15] COLOPI M, CAPRIO L, DEMIR A G, et al. Selective laser melting of pure Cu with a 1 kW single mode fiber laser[J]. Procedia CIRP, 2018, 74: 59-63.
[19] [19] KNNING T P, DROVS S, STOIBER M, et al. High brightness fiber coupled diode lasers at 450 nm[C]//High-Power Diode Laser Technology ⅩⅤⅡ. San Francisco, USA: SPIE, 2019.
[21] [21] SIVA PRASAD H, BRUECKNER F, VOLPP J, et al. Laser metal deposition of copper on diverse metals using green laser sources[J].The International Journal of Advanced Manufacturing Technology, 2020, 107(3/4): 1559-1568.
[22] [22] YANG Y, GU D D, DAI D H, et al. Laser energy absorption behavior of powder particles using ray tracing method during selective laser melting additive manufacturing of aluminum alloy[J]. Materials & Design, 2018, 143: 12-19.
[23] [23] SPISZ E W. Solar absorptances and spectral reflectances of 12 metals for temperatures ranging from 300 to 500 K[M]. [S.l.]National Aeronautics and Space Administration, 1969.
[26] [26] ASANO K, TSUKAMOTO M, FUNADA Y, et al. Copper film formation on metal surfaces with 100 W blue direct diode laser system[J]. Journal of Laser Applications, 2018, 30(3): 032602.
[27] [27] NAKAAZE T, TSUKAMOTO M, SATO Y, et al. Development of 100 W blue direct diode laser system for cladding of copper[C]//International Congress on Applications of Lasers & Electro-Optics. San Diego, California, USA: Laser Institute of America, 2016.
[28] [28] HIGASHINO R, TSUKAMOTO M, SATO Y, et al. Development of 100 W class blue direct diode laser coating system for laser metal deposition[C]//SPIE LASE. Proc SPIE 10095, Laser 3D Manufacturing IV, San Francisco, California, USA:[s.n.]. 2017, 10095: 69-72.
[29] [29] WANG H Z, KAWAHITO Y, YOSHIDA R, et al. Development of a high-power blue laser (445 nm) for material processing[J]. Optics Letters, 2017, 42(12): 2251-2254.
[30] [30] SENGOKU M, TSUKAMOTO M, ASANO K, et al. Experimental investigation on temperature distribution of molten pool for copper with blue direct diode laser cladding[C]//International Congress on Applications of Lasers & Electro-Optics. Atlanta, Georgia, USA: Laser Institute of America, 2017.
[31] [31] ASANO K, TSUKAMOTO M, SECHI Y, et al. Laser metal deposition of pure copper on stainless steel with blue and IR diode lasers[J]. Optics & Laser Technology, 2018, 107: 291-296.
[32] [32] TAKENAKA K, SATO Y, ONO K, et al. Pure copper layer formation on stainless-steel and aluminum substrate with a multibeam laser metal deposition system with blue diode laser[J]. Journal of Laser Applications, 2021, 33(4): 042033.
[33] [33] SATO Y, TSUKAMOTO M, SHOBU T, et al. In situ X-ray observations of pure-copper layer formation with blue direct diode lasers[J]. Applied Surface Science, 2019, 480: 861-867.
[34] [34] TSUKAMOTO M. Developments of high power blue diode laser systems for laser metal deposition and welding of pure copper materials[C]//Proc SPIE 11262, High-Power Diode Laser Technology ⅩⅤⅢ, San Francisco, California, USA: SPIE LASE. 2020, 11262: 132-137.
[35] [35] MASUNO S I, TSUKAMOTO M, TOJO K, et al. Metal Powder bed fusion additive manufacturing with 100W blue diode laser[C]//International Congress on Applications of Lasers & Electro-Optics. Atlanta, Georgia, USA. Laser Institute of America, 2017.
[36] [36] HIGASHINO R, SATO Y, MASUNO S I, et al. Development of blue diode laser for additive manufacturing[C]//Laser 3D Manufacturing Ⅶ. San Francisco, USA: SPIE, 2020, 1127114-1127114-7.
[37] [37] BRITTEN S, KRAUSE V. Industrial blue diode laser breaks 1 kW barrier[J]. PhotonicsViews, 2019, 16(2): 30-33.
[38] [38] BAUMANN M, BALCK A, MALCHUS J, et al. 1000 W blue fiber-coupled diode-laser emitting at 450 nm[C]//Proc SPIE 10900, High-Power Diode Laser Technology ⅩⅤⅡ, San Francisco, California, USA: SPIE LASE. 2019, 10900: 10-21.
[40] [40] LIANG F, ZHAO D G, LIU Z S, et al. GaN-based blue laser diode with 6.0 W of output power under continuous-wave operation at room temperature[J]. Journal of Semiconductors, 2021, 42(11): 112801.
[41] [41] TIAN A Q, HU L, ZHANG L Q, et al. Design and growth of GaN-based blue and green laser diodes [J]. Science China Materials, 2020, 63(8): 1348-63.
[44] [44] CHEN X H, REN D L, WU Y T, et al. kW-level high brightness blue diode laser[C]//Proc SPIE 11668, High-Power Diode Laser Technology XIX, [S.l.]. SPIE LASE. 2021, 11668: 74-79.
[45] [45] SHIBATA T, TSUKAMOTO M, SATO Y, et al. Effect of input energy on densification for pure copper fabricated by SLM with blue diode laser[C]//Proc SPIE 10909, Laser 3D Manufacturing VI, San Francisco, California, USA: SPIE LASE. 2019, 10909: 165-170.
[46] [46] HORI E, SATO Y, SHIBATA T, et al. Development of SLM process using 200 W blue diode laser for pure copper additive manufacturing of high density structure[J]. Journal of Laser Applications, 2021, 33(1): 012008.
[47] [47] ONO K, TSUKAMOTO M, SATO Y, et al. Forming of pure copper rod by LMD method with blue diode lasers[C]//Laser 3D Manufacturing Ⅶ. San Francisco, USA. SPIE, 2020, 11271.
[48] [48] BRITTEN S, OCYLOK S. Blues skies for copper cladding with 450nm[C]//Laser 3D Manufacturing Ⅵ. San Francisco, USA: SPIE, 2019, 109090C-109090C-8.
[49] [49] YANG H H, WU J Y, WEI Q L, et al. Stable cladding of high reflectivity pure copper on the aluminum alloy substrate by an infrared-blue hybrid laser[J]. Additive Manufacturing Letters, 2022, 3: 100040.
Get Citation
Copy Citation Text
Ning Chenhong, Yu Ting, Chang Cheng, Liu Min, Yan Xingchen. Current Status and Development on Additive Manufacturing with Blue Laser Source of High Reflectivity Metals[J]. APPLIED LASER, 2023, 43(10): 77
Received: Jun. 10, 2022
Accepted: --
Published Online: May. 23, 2024
The Author Email: