Acta Optica Sinica, Volume. 38, Issue 4, 0410003(2018)

Low-Dose CT Image Denoising Method Based on Convolutional Neural Network

Yungang Zhang*, Benshun Yi, Chenyue Wu, and Yu Feng
Author Affiliations
  • Eletronic Information School, Wuhan University, Wuhan, Hubei 430072, China
  • show less
    Figures & Tables(9)
    Schematic of the network
    Schematic of dilated convolution. (a) Step size is 1; (b) step size is 2; (c) step size is 3
    Testing images
    Denoising results comparison images. (a) Original CT image; (b) low-dose CT image; (c) RED-CNN; (d) proposed network
    Fig. 4(a) enlargement of the box region. (a) Original CT image; (b) low-dose CT image; (c) RED-CNN; (d) proposed network
    • Table 1. Objective indexes of all the testing images

      View table

      Table 1. Objective indexes of all the testing images

      Serial numberIndexLow-doseRED-CNNProposed network
      PSNR /dB26.2732.3532.73
      SSIM0.82090.93780.9378
      RMSE0.04860.02410.0231
      PSNR /dB27.4932.5932.34
      SSIM0.84610.95730.9536
      RMSE0.04220.02350.0241
      PSNR /dB30.4335.7536.28
      SSIM0.90650.96210.9630
      RMSE0.03010.01630.0153
      PSNR /dB24.7231.6533.19
      SSIM0.77110.91840.9199
      RMSE0.05810.02610.0219
      PSNR /dB22.0027.0728.80
      SSIM0.72520.89220.8968
      RMSE0.07940.04430.0363
      PSNR /dB20.8226.7228.16
      SSIM0.69950.89500.8975
      RMSE0.09090.04610.0391
      PSNR /dB29.3036.8536.69
      SSIM0.88430.96600.9653
      RMSE0.03430.01440.0146
      PSNR /dB29.7835.5135.29
      SSIM0.91910.97070.9695
      RMSE0.03240.01680.0172
      PSNR /dB27.5937.7537.53
      SSIM0.83370.96180.9605
      RMSE0.04170.01300.0133
      PSNR /dB27.2732.3733.53
      SSIM0.86070.93410.9348
      RMSE0.04330.02410.0211
      AveragePSNR /dB26.5732.8633.45
      SSIM0.82670.93950.9399
      RMSE0.05010.02490.0226
    • Table 2. Comparision of complexity

      View table

      Table 2. Comparision of complexity

      ItemRED-CNNProposed network
      Complexity1848000216864
      Time consumption (CPU) /s12.4723.908
      Time consumption (GPU) /s0.1800.061
    • Table 3. Comparision of different network structures

      View table

      Table 3. Comparision of different network structures

      Structure descriptionDefaultWithout BN and residual learningWithout concatenating feature mapsWithout dilated convolution
      PSNR /dB33.4532.8433.3333.24
      SSIM0.93990.93690.93820.9373
      RMSE0.02260.02450.02290.0231
    • Table 4. Impact on denoising performance when each ConvBlock contains different numbers of Conv-BN-ReLU

      View table

      Table 4. Impact on denoising performance when each ConvBlock contains different numbers of Conv-BN-ReLU

      Structure descriptionNumbers of Conv-BN-ReLU contained in each ConvBlock
      123
      PSNR /dB33.2733.4533.33
      SSIM0.92900.93990.9397
      RMSE0.02300.02260.0229
    Tools

    Get Citation

    Copy Citation Text

    Yungang Zhang, Benshun Yi, Chenyue Wu, Yu Feng. Low-Dose CT Image Denoising Method Based on Convolutional Neural Network[J]. Acta Optica Sinica, 2018, 38(4): 0410003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Sep. 15, 2017

    Accepted: --

    Published Online: Jul. 10, 2018

    The Author Email: Zhang Yungang (zyg60714@126.com)

    DOI:10.3788/AOS201838.0410003

    Topics