Journal of Synthetic Crystals, Volume. 49, Issue 12, 2383(2020)

Research Progress on Gd-Based Coordination Polymer Molecular Magnetic Refrigeration Materials

HU Peng1,2, ZHU Xiaoming1,2, WANG Juntao1,2, LI Zeyu1,2, and JI Liudi1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(27)

    [1] [1] Zheng Y Z, Zhou G J, Zheng Z, et al. Molecule-based magnetic coolers[J]. Chemical Society Reviews, 2014, 43(5): 1462-1475.

    [2] [2] Evangelisti M, Luis F, De Jongh L J, et al. Magnetothermal properties of molecule-based materials[J]. Journal of Materials Chemistry, 2006, 16(26): 2534-2549.

    [3] [3] Han Y, Han S D, Pan J, et al. An excellent cryogenic magnetic cooler: magnetic and magnetocaloric study of an inorganic frame material[J]. Materials Chemistry Frontiers, 2018, 2(12): 2327-2332.

    [5] [5] Liu J L, Chen Y C, Guo F S, et al. Recent advances in the design of magnetic molecules for use as cryogenic magnetic coolants[J]. Coordination Chemistry Reviews, 2014, 281: 26-49.

    [8] [8] Tishin A M, Spichkin Y I. The Magnetocaloric effect and its application[M]. IOP Publishing, Bristol and Philadelphia, 2003.

    [9] [9] Sessoli R, Gatteschi D, Villain J. Molecular nano-magnets[M]. Oxford University Press, Oxford, UK, 2006.

    [13] [13] Qiu J Z, Chen Y C, Wang L F, et al. The effect of magnetic coupling on magneto-caloric behaviour in two 3D Gd-glycolate coordination polymers[J]. Inorganic Chemistry Frontiers, 2016, 3(1): 150-156.

    [14] [14] Liu S J, Cao C, Xie C C, et al. Tricarboxylate-based GdIII coordination polymers exhibiting large magnetocaloric effects[J]. Dalton Trans, 2016, 45(22): 9209-9215.

    [15] [15] Lorusso G, Natividad E, Evangelisti M, et al. Growth of a dense gadolinium metal-organic framework on oxide-free silicon for cryogenic local refrigeration[J]. Materials Horizons, 2019, 6(1): 144-154.

    [17] [17] Liu S J, Han S D, Zhao J P, et al. In-situ synthesis of molecular magnetorefrigerant materials[J]. Coordination Chemistry Reviews, 2019, 394: 39-52.

    [18] [18] Peng J B, Kong X J, Zhang Q C, et al. Beauty, symmetry, and magnetocaloric effect-four-shell keplerates with 104 lanthanide atoms[J]. Journal of the American Chemical Society, 2014, 136(52): 17938-17941.

    [19] [19] Dong J, Cui P, Shi P F, et al. Ultrastrong alkali-resisting lanthanide-zeolites assembled by [Ln60] nanocages[J]. Journal of the American Chemical Society, 2015, 137(51): 15988-15991.

    [20] [20] Guo F S, Leng J D, Liu J L, et al. Polynuclear and polymeric gadolinium acetate derivatives with large magnetocaloric effect[J]. Inorganic Chemistry, 2012, 51(1): 405-413.

    [21] [21] Lorusso G, Palacios M A, Nichol G S, et al. Increasing the dimensionality of cryogenic molecular coolers: Gd-based polymers and metal-organic frameworks[J]. Chemical Communications, 2012, 48(61): 7592-7594.

    [22] [22] Meng Y, Chen Y C, Zhang Z M, et al. Gadolinium oxalate derivatives with enhanced magnetocaloric effect via ionothermal synthesis[J]. Inorganic Chemistry, 2014, 53(17): 9052-9057.

    [23] [23] Biswas S, Adhikary A, Goswami S, et al. Observation of a large magnetocaloric effect in a 2D Gd(III)-based coordination polymer[J]. Dalton Transactions, 2013, 42(37): 13331-13334.

    [24] [24] Liu S J, Cao C, Yao S L, et al. Temperature- and vapor-induced reversible single-crystal-to-single-crystal transformations of three 2D/3D GdIII-organic frameworks exhibiting significant magnetocaloric effects[J]. Dalton Transactions, 2016, 46(1): 64-70.

    [25] [25] Han S D, Li J H, Liu H H, et al. Two hybrid lanthanide complexes exhibiting a large magnetocaloric effect and slow magnetic relaxation[J]. Dalton Transactions, 2017, 46(30): 10023-10028.

    [26] [26] Song T Q, Dong J, Yang A F, et al. Wheel-like Ln18 cluster organic frameworks for magnetic refrigeration and conversion of CO2[J]. Inorganic Chemistry, 2018, 57(6): 3144-3150.

    [27] [27] Li Z Y, Wang F F, Zhu P Y, et al. One trans-aconitate-based two-dimensional Gd(III) polymer displaying large magnetocaloric effect[J]. Inorganic Chemistry Communications, 2020. doi: https://doi.org/10.1016/j.inoche.2020.108166.

    [28] [28] Sedláková L, Hanko J, Orendáová A, et al. Magnetism and magnetocaloric effect in S=7/2 Heisenberg antiferromagnet Gd2(fum)3(H2O)4·3-H2O[J]. Journal of Alloys & Compounds, 2009, 487(1): 425-429.

    [29] [29] Sibille R, Mazet T, Malaman B, et al. A metal-organic framework as attractive cryogenic magnetorefrigerant[J]. Chemistry-A European Journal, 2012, 18(41): 12970-12973.

    [30] [30] Lorusso G, Sharples J W, Palacios E, et al. A dense metal-organic framework for enhanced magnetic refrigeration[J]. Advanced Materials, 2013, 25(33): 4653-4656.

    [31] [31] Chen Y C, Guo F S, Zheng Y Z, et al. Gadolinium(III)-hydroxy ladders trapped in succinate frameworks with optimized magnetocaloric effect[J]. Chemistry-A European Journal, 2013, 19(40): 13504-13510.

    [32] [32] Biswas S, Mondal A K, Konar S. Densely packed lanthanide cubane based 3 d metal-organic frameworks for efficient magnetic refrigeration and slow magnetic relaxation[J]. Inorganic Chemistry, 2016, 55(5): 2085-2090.

    [33] [33] Li J, Liu A J, Ma Y J, et al. A large magnetocaloric effect in two hybrid Gd-complexes: the synergy of inorganic and organic ligands towards excellent cryo-magnetic coolants[J]. Journal of Materials Chemistry C, 2019, 7: 6352-6358.

    [34] [34] Das C, Upadhyay A, Ansari K U, et al. Lanthanide-based porous coordination polymers: syntheses, slow relaxation of magnetization, and magnetocaloric effect[J]. Inorganic Chemistry, 2018, 57(11): 6584-6598.

    Tools

    Get Citation

    Copy Citation Text

    HU Peng, ZHU Xiaoming, WANG Juntao, LI Zeyu, JI Liudi. Research Progress on Gd-Based Coordination Polymer Molecular Magnetic Refrigeration Materials[J]. Journal of Synthetic Crystals, 2020, 49(12): 2383

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Jan. 26, 2021

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics