Chinese Optics Letters, Volume. 20, Issue 3, 031701(2022)
Fluo-Fluo translation based on deep learning
[1] A. Nwaneshiudu, C. Kuschal, F. H. Sakamoto, R. R. Anderson, K. Schwarzenberger, R. C. Young. Introduction to confocal microscopy. J. Investig. Dermatol., 132, e3(2012).
[2] S. Rohilla, B. Kraemer, F. Koberling, I. Gregor, A. C. Hocke. Multi-target immunofluorescence by separation of antibody cross-labelling via spectral-FLIM-FRET. Sci. Rep., 10, 3820(2020).
[3] P. van Horssen, M. Siebes, I. Hoefer, J. A. E. Spaan, J. P. H. M. van den Wijngaard. Improved detection of fluorescently labeled microspheres and vessel architecture with an imaging cryomicrotome. Med. Biol. Eng. Comput., 48, 735(2010).
[4] D. Shen, G. Wu, H. Suk. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng., 19, 221(2017).
[5] N. Aloysius, M. Geetha. A review on deep convolutional neural networks. International Conference on Communication and Signal Processing, 2(2017).
[6] E. Nehme, L. E. Weiss, T. Michaeli, Y. Shechtman. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica, 5, 458(2018).
[7] H. Wang, Y. Rivenson, Y. Jin, Z. Wei, R. Gao, H. Gunaydin, L. A. Bentolila, C. Kural, A. Ozcan. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Methods, 16, 103(2019).
[8] X. Chai, Q. Ba, G. Yang. Characterizing robustness and sensitivity of convolutional neural networks for quantitative analysis of mitochondrial morphology. Quant. Biol., 6, 344(2018).
[9] H. Shen, J. Gao. Deep learning virtual colorful lens-free on-chip microscopy. Chin. Opt. Lett., 18, 121705(2020).
[10] E. M. Christiansen, S. J. Yang, D. M. Ando, A. Javaherian, G. Skibinski, S. Lipnick, E. Mount, A. O’Neil, K. Shah, A. K. Lee, P. Goyal, W. Fedus, R. Poplin, A. Esteva, M. Berndl, L. L. Rubin, P. Nelson, S. Finkbeiner. In silico labeling: predicting fluorescence images in unlabeled images. Cell, 173, 792(2018).
[11] T. Nguyen, V. Bui, A. Thai, C. Raub, L. C. Chang, G. Nehmetallah. Virtual organelle self-coding for fluorescence imaging via adversarial learning. J. Biomed. Opt., 25, 9(2020).
[12] K. Shigene, Y. Hiasa, Y. Otake, M. Soufi, S. Janewanthanakul, T. Nishimura, Y. Sato, S. Suetsugu. Translation of cellular protein localization using convolutional. Front. Cell. Dev. Biol., 9, 635231(2021).
[13] P. Isola, J. Y. Zhu, T. Zhou, A. A. Efros. Image-to-image translation with conditional adversarial networks. Conference on Computer Vision and Pattern Recognition, 2(2017).
[14] Z. Yu, Z. Ju, X. Zhang, Z. Meng, F. Yin, K. Xu. High-speed multimode fiber imaging system based on conditional generative adversarial network. Chin. Opt. Lett., 19, 081101(2021).
[15] J. Feng, X. Feng, J. Chen, X. Cao, X. Zhang, L. Jiao, T. Yu. Generative adversarial networks based on collaborative learning and attention mechanism for hyperspectral image classification. Remote Sens., 12, 1149(2020).
[16] Z. Wang, E. P. Simoncelli, A. C. Bovik. Multi-scale structural similarity for image quality assessment. Asilomar Conference on Signals, Systems & Computers, 3(2003).
[17] S. Basavaraju, P. K. Sharma, A. Sur. Memorability based image to image translation. 12th International Conference on Machine Vision, 1(2019).
[18] D. Li, H. Hui, Y. Zhang, W. Tong, F. Tian, X. Yang, J. Liu, Y. Chen, J. Tian. Deep learning for virtual histological staining of bright-field microscopic images of unlabeled carotid artery tissue. Mol. Imaging Biol., 22, 1301(2020).
[19] M. Darvishi, H. G. Hamidabadi, S. S. Negah, A. Moayeri, T. Tiraihi, J. Mirnajafi-Zadeh, A. J. Jahan-Abad, A. Shojaei. PuraMatrix hydrogel enhances the expression of motor neuron progenitor marker and improves adhesion and proliferation of motor neuron-like cells. Iran. J. Basic. Med. Sci., 23, 4(2020).
[20] R. Matsuno, H. Ohtaki, T. Nakamachi, J. Watanabe, S. Yofu, D. Hayashi, T. Takeda, N. Nonaka, M. Seki, M. Nakamura, K. Itabashi, S. Shioda. Distribution and localization of pituitary adenylate cyclase-activating polypeptide-specific receptor (PAC1R) in the rostral migratory stream of the infant mouse brain. Regul. Pept., 145, 80(2008).
[21] D. Wlodkowic, W. Telford, J. Skommer, Z. Darzynkiewicz. Apoptosis and beyond: cytometry in studies of programmed cell death. Methods Cell Biol., 103, 55(2011).
[22] R. Kleiman, G. Banker, O. Steward. Development of subcellular mRNA compartmentation in hippocampal neurons in culture. J. Neurosci., 14, 1130(1994).
[23] D. C. Molliver, M. J. Radeke, S. C. Feinstein, W. D. Snider. Presence or absence of TrkA protein distinguishes subsets of small sensory neurons with unique cytochemical characteristics and dorsal horn projections. J. Comp. Neurol., 361, 404(1995).
[24] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process, 13, 600(2004).
[25] S. Bolte, F. P. Cordelieres. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc., 224, 213(2006).
[26] B. G. Qian, J. Lei. Application of multiplexed immunofluorescent staining and multi-spectral imaging in histological studies. J. Histochem. Cytochem., 26, 5013(2017).
[27] J. LaChance, D. J. Cohen. Practical fluorescence reconstruction microscopy for large samples and low-magnification imaging. PLoS Comput. Biol., 16, e1008443(2020).
Get Citation
Copy Citation Text
Zhengfen Jiang, Boyi Li, Tho N. H. T. Tran, Jiehui Jiang, Xin Liu, Dean Ta, "Fluo-Fluo translation based on deep learning," Chin. Opt. Lett. 20, 031701 (2022)
Category: Biophotonics
Received: Nov. 11, 2021
Accepted: Dec. 13, 2021
Posted: Dec. 14, 2021
Published Online: Jan. 11, 2022
The Author Email: Xin Liu (xinliu.c@gmail.com), Dean Ta (tda@fudan.edu.cn)