Chinese Journal of Lasers, Volume. 52, Issue 10, 1010001(2025)
Aerosol Identification Based on Attention-Unet Neural Network
Fig. 5. Identification result and corresponding observation data on March 22, 2023. (a) Model identification result; (b) depolarization ratio; (c) reflectivity factor; (d) extinction coefficient; (e) mass concentration ratio of PM2.5 to PM10; (f) mass concentrations of PM2.5 and PM10
Fig. 6. Identification result and corresponding observation data on April 14, 2023. (a) Model identification result; (b) depolarization ratio; (c) reflectivity factor; (d) extinction coefficient; (e) mass concentration ratio of PM2.5 to PM10; (f) mass concentrations of PM2.5 and PM10
Fig. 7. Identification result and observation data on November 17, 2022. (a) Identification result; (b) depolarization ratio; (c) reflectivity factor; (d) extinction coefficient; (e) mass concentration ratio of PM2.5 to PM10; (f) mass concentrations of PM2.5 and PM10
Fig. 8. Identification result and observation data on October 19, 2022. (a) Identification result; (b) depolarization ratio; (c) reflectivity factor; (d) extinction coefficient; (e) mass concentration ratio of PM2.5 to PM10; (f) mass concentrations of PM2.5 and PM10
|
|
|
|
Get Citation
Copy Citation Text
Changqing Fu, Zhipeng Yang, Chengli Ji, Tao Fu, Fa Tao, Jianhui Zheng. Aerosol Identification Based on Attention-Unet Neural Network[J]. Chinese Journal of Lasers, 2025, 52(10): 1010001
Category: remote sensing and sensor
Received: Sep. 12, 2024
Accepted: Jan. 14, 2025
Published Online: Apr. 23, 2025
The Author Email: Zhipeng Yang (yangzp@cuit.edu.cn), Chengli Ji (jcl0606@163.com)
CSTR:32183.14.CJL241202