Chinese Journal of Lasers, Volume. 52, Issue 10, 1010001(2025)

Aerosol Identification Based on Attention-Unet Neural Network

Changqing Fu1, Zhipeng Yang1、*, Chengli Ji2、**, Tao Fu1, Fa Tao2, and Jianhui Zheng1
Author Affiliations
  • 1School of Electronic Engineering, Chengdu University of Information Technology, Chengdu 610255, Sichuan , China
  • 2Meteorological Observation Center, China Meteorological Administration, Beijing 100081, China
  • show less
    Figures & Tables(12)
    Flowchart of aerosol identification algorithm
    Attention-Unet model used in this study
    Attention mechanism module
    Confusion matrix of Attention-Unet model
    Identification result and corresponding observation data on March 22, 2023. (a) Model identification result; (b) depolarization ratio; (c) reflectivity factor; (d) extinction coefficient; (e) mass concentration ratio of PM2.5 to PM10; (f) mass concentrations of PM2.5 and PM10
    Identification result and corresponding observation data on April 14, 2023. (a) Model identification result; (b) depolarization ratio; (c) reflectivity factor; (d) extinction coefficient; (e) mass concentration ratio of PM2.5 to PM10; (f) mass concentrations of PM2.5 and PM10
    Identification result and observation data on November 17, 2022. (a) Identification result; (b) depolarization ratio; (c) reflectivity factor; (d) extinction coefficient; (e) mass concentration ratio of PM2.5 to PM10; (f) mass concentrations of PM2.5 and PM10
    Identification result and observation data on October 19, 2022. (a) Identification result; (b) depolarization ratio; (c) reflectivity factor; (d) extinction coefficient; (e) mass concentration ratio of PM2.5 to PM10; (f) mass concentrations of PM2.5 and PM10
    • Table 1. Parameters of instruments

      View table

      Table 1. Parameters of instruments

      InstrumentObservationparameterCorresponding spatio-temporal resolution
      LidarDepolarization ratio/extinction coefficient7.5 m, 1 min
      Millimeter-wave cloud radarReflectivity factor30 m, 1 min
    • Table 2. Data sample selection criteria

      View table

      Table 2. Data sample selection criteria

      WeatherAQIExtinction coefficientDepolarization ratio
      Hazy100‒5000.2‒3.00.02‒0.10
      Dusty100‒5000.2‒3.00.15‒0.38
      Sunny or cloudy0‒1000‒0.20‒0.1
    • Table 3. Numbers of labels for each category in dataset

      View table

      Table 3. Numbers of labels for each category in dataset

      LabelPollutantClearCloudDustPolluted dust
      Number281560830443514758163715934311202130
    • Table 4. Performance comparison of different neural models

      View table

      Table 4. Performance comparison of different neural models

      ModelAccuracy /%Average precision /%Average recall /%
      FCN87.581.773.9
      SegNet88.486.481.5
      U-Net95.289.388.6
      Attention-Unet96.591.589.9
    Tools

    Get Citation

    Copy Citation Text

    Changqing Fu, Zhipeng Yang, Chengli Ji, Tao Fu, Fa Tao, Jianhui Zheng. Aerosol Identification Based on Attention-Unet Neural Network[J]. Chinese Journal of Lasers, 2025, 52(10): 1010001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: Sep. 12, 2024

    Accepted: Jan. 14, 2025

    Published Online: Apr. 23, 2025

    The Author Email: Zhipeng Yang (yangzp@cuit.edu.cn), Chengli Ji (jcl0606@163.com)

    DOI:10.3788/CJL241202

    CSTR:32183.14.CJL241202

    Topics