Laser & Optoelectronics Progress, Volume. 62, Issue 8, 0815009(2025)

Three-Dimensional Object-Tracking Method Based on Joint of Multidimensional Features of Point Clouds

Feng Tian, Sirui Zhang, Fang Liu*, Zhuohan Han, Mengyang Zhang, Yizhou Lu, Guibao Ma, Huan Chang, Ling Zhao, and Yuxiang Han
Author Affiliations
  • School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, Heilongjiang , China
  • show less
    Figures & Tables(13)
    Structure diagram of proposed algorithm
    Structure diagram of object embedding module
    Structural diagram of feature matching module
    Structural diagram of motion forecasting module
    Multi-dimensional feature joint data association chart
    Hungarian matching algorithm description
    Effect of different sizes of hyperparameters on AMOTA. (a) Object embedding module; (b) feature matching module; (c) motion pridection module; (d) multi-dimensional feature affinity
    Tracking effect on nuScenes dataset. (a)(d) Proposed algorithm in BEV; (b)(e) CenterPoint in camera view; (c)(f) proposed algorithm in camera view
    Aerial view of tracking effect of validation set. (a) Proposed algorithm; (b) comparison algorithm 1; (c) comparison algorithm 2; (d) comparison algorithm 3; (e) comparison algorithm 4; (f) comparison algorithm 5
    • Table 1. Experimental software and hardware environment

      View table

      Table 1. Experimental software and hardware environment

      HardwareSpecificationSoftwareVersion
      CPUIntel Xeon Silver 4214SystemUbuntu 20.04 LTS
      GPUNVIDIA Corporation GP102GL [Tesla P40] GPU×2Python3.7.0
      PyTorch1.11.0
      Memory251.5 GiBCUDA11.3
      Hard disk4.2 TBCUDNN8.2.1
    • Table 2. Comparison of experimental results

      View table

      Table 2. Comparison of experimental results

      AlgorithmData typeAMOTA /%AMOTP /%MOTA /%IDS
      AB3DMOT2Lidar45.415.115.4927
      Chiu et al.7Lidar55.061.745.9776
      Eagermot24Lidar+Camera66.755.056.81165
      Minkowski Tracker25Lidar67.854.057.8325
      OGR3MOT26Lidar65.662.755.4288
      SimpleTrack9Lidar66.856.855.7609
      CenterPoint8Lidar63.855.553.7760
      ProposedLidar68.257.455.6438
    • Table 3. Different categories track performance

      View table

      Table 3. Different categories track performance

      AlgorithmCarTruckBusTrailerPedestrianMotorcycleBicycle
      AB3DMOT227.81.340.813.614.18.17.2
      SimpleTrack982.358.771.567.379.667.440.7
      OGR3MOT2681.659.071.167.178.764.038.0
      Eagermot2458.359.774.063.674.462.558.3
      CenterPoint882.959.971.165.176.759.132.1
      Proposed84.053.487.855.678.953.657.1
    • Table 4. Ablation experiments

      View table

      Table 4. Ablation experiments

      MethodModuleAMOTA /%AMOTP /%MOTA /%IDS
      Embedded and matching networkMotions and prediction module
      Baseline63.855.553.7760
      Experiments 166.447.252.4653
      Experiments 265.354.349.7547
      Proposed68.257.455.6438
    Tools

    Get Citation

    Copy Citation Text

    Feng Tian, Sirui Zhang, Fang Liu, Zhuohan Han, Mengyang Zhang, Yizhou Lu, Guibao Ma, Huan Chang, Ling Zhao, Yuxiang Han. Three-Dimensional Object-Tracking Method Based on Joint of Multidimensional Features of Point Clouds[J]. Laser & Optoelectronics Progress, 2025, 62(8): 0815009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Aug. 19, 2024

    Accepted: Oct. 8, 2024

    Published Online: Apr. 3, 2025

    The Author Email: Fang Liu (Ifliufang1983@126.com)

    DOI:10.3788/LOP241863

    CSTR:32186.14.LOP241863

    Topics