Chinese Journal of Lasers, Volume. 49, Issue 21, 2103101(2022)

Measuring Thermal Diffusivity of Optical Elements by Surface Thermal Lens Method

Chenlu Hu1,2,3, Dawei Li1,2、*, Xiaofeng Liu1,2, Xiaoling Li1,2, Yuanan Zhao1,2,3, and Jianda Shao1,2,4
Author Affiliations
  • 1Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai 201800, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
  • show less
    References(24)

    [1] Beigelbeck R, Cerimovic S, Reyes-Romero D et al. Thermal properties of a thin-film membrane embedded in a multiparameter wind sensor: on-device characterization utilizing a transient measurement approach[J]. IEEE Sensors Journal, 16, 3409-3418(2016).

    [2] Xu W, Wang X Y, Zhao X J et al. Determination of thermal conductivities for thin-film materials in CMOS MEMS process[J]. IEEE Transactions on Instrumentation and Measurement, 70, 6001309(2021).

    [3] Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 12, 435-448(2016).

    [4] Long G Y, Zhang Y P, Fan X L et al. Deposition of high reflective films on deformable mirror for high power laser system[J]. Optical Engineering, 59, 057103(2020).

    [5] Bonora S, Pilar J, Lucianetti A et al. Design of deformable mirrors for high power lasers[J]. High Power Laser Science and Engineering, 4, e16(2016).

    [6] Li Y L, Ding J, Bai Z X et al. Diamond Raman laser: a promising high-beam-quality and low-thermal-effect laser[J]. High Power Laser Science and Engineering, 9, e35(2021).

    [7] Wang W, Sun D, Du X et al. High-power operation of double-pass pumped Nd∶YVO4 thin disk laser[J]. High Power Laser Science and Engineering, 8, e10(2020).

    [8] Sim G D, Krogstad J A, Xie K Y et al. Tailoring the mechanical properties of sputter deposited nanotwinned nickel-molybdenum-tungsten films[J]. Acta Materialia, 144, 216-225(2018).

    [9] Gong H, Li C F, Li Z Y. CW-laser-induced thermal and mechanical damage in optical materials[J]. Proceedings of SPIE, 3578, 576-583(1999).

    [10] Puttick K E, Holm R, Ristau D et al. Continuous-wave CO2-laser-induced damage thresholds in optical components[J]. Proceedings of SPIE, 3244, 188-198(1998).

    [11] Du T Y, Huang D J, Cheng H et al. Compensation method for performance degradation of optically addressed spatial light modulator induced by CW laser[J]. High Power Laser Science and Engineering, 10, e7(2022).

    [12] Gu H Q, Wang H R. Effect of strain on thermal conductivity of amorphous silicon dioxide thin films: a molecular dynamics study[J]. Computational Materials Science, 144, 133-138(2018).

    [13] Cernuschi F, Bison P G, Figari A et al. Thermal diffusivity measurements by photothermal and thermographic techniques[J]. International Journal of Thermophysics, 25, 439-457(2004).

    [14] Parker W J, Jenkins R J, Butler C P et al. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity[J]. Journal of Applied Physics, 32, 1679-1684(1961).

    [15] Staicu D, Cozzo C, Pagliosa G et al. Thermal conductivity of homogeneous and heterogeneous MOX fuel with up to 44 MWD/kgHM burn-up[J]. Journal of Nuclear Materials, 412, 129-137(2011).

    [16] Hatta I, Sasuga Y, Kato R et al. Thermal diffusivity measurement of thin films by means of an ac calorimetric method[J]. Review of Scientific Instruments, 56, 1643-1647(1985).

    [17] Zhang X, Grigoropoulos C P. Thermal conductivity and diffusivity of free-standing silicon nitride thin films[J]. Review of Scientific Instruments, 66, 1115-1120(1995).

    [18] Yoshida A, Omae Y, Kurita T et al. Measurement of the thermal diffusivity of metallic foils and films by the photoacoustic method[J]. International Journal of Thermophysics, 21, 513-524(2000).

    [19] Suber G, Bertolotti M, Sibilia C et al. Transverse photothermal deflection spectroscopy (PDS) applied to thermal diffusiyity measurements[J]. Journal of Thermal Analysis, 32, 1039-1050(1987).

    [20] Jackson W B, Amer N M, Boccara A C et al. Photothermal deflection spectroscopy and detection[J]. Applied Optics, 20, 1333-1344(1981).

    [21] Korte D, Pavlica E, Bratina G et al. Characterization of pure and modified TiO2 layer on glass and aluminum support by beam deflection spectrometry[J]. International Journal of Thermophysics, 35, 1990-2000(2014).

    [22] Wu Z L, Kuo P K, Lu Y S et al. Laser-induced surface thermal lensing for thin film characterizations[J]. Proceedings of SPIE, 2714, 294-304(1996).

    [23] Fan S H[D]. High sensitive weak absorption apparatus for optical coatings, 46-48(2005).

    [24] Korte D, Carraro G, Fresno F et al. Thermal properties of surface-modified α-Fe2O3 and ε-Fe2O3 photocatalysts determined by beam deflection spectroscopy[J]. International Journal of Thermophysics, 35, 2107-2114(2014).

    Tools

    Get Citation

    Copy Citation Text

    Chenlu Hu, Dawei Li, Xiaofeng Liu, Xiaoling Li, Yuanan Zhao, Jianda Shao. Measuring Thermal Diffusivity of Optical Elements by Surface Thermal Lens Method[J]. Chinese Journal of Lasers, 2022, 49(21): 2103101

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Thin Films

    Received: Jan. 10, 2022

    Accepted: Mar. 8, 2022

    Published Online: Oct. 14, 2022

    The Author Email: Dawei Li (lidawei@siom.ac.cn)

    DOI:10.3788/CJL202249.2103101

    Topics