Chinese Journal of Lasers, Volume. 51, Issue 5, 0508001(2024)

Experimental Study on Ultra‑narrow Bandwidth Optical Filters with Excited States of Cesium Atoms

Hanshuai Zhao1, Baodong Yang1,2,3、*, Zhao Xue1, and Lanlan Zheng1
Author Affiliations
  • 1College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, Shanxi, China
  • 2State Key Laboratory of Quantum Optics and Quantum Optics Device, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, Shanxi, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi, China
  • show less
    References(34)

    [1] Lai M B, Geng M M, Tan Y X et al. Optical filter design based on cascaded double-ring-assisted Mach-Zehnder interferometers with bandwidth tuning capability[J]. Acta Optica Sinica, 43, 1113003(2023).

    [2] Sun L C, Li J Y, Jia Q Q et al. Microring-based response-switchable microwave photonic filter[J]. Laser & Optoelectronics Progress, 60, 0913001(2023).

    [3] Tang J X, Wang Q J, Li Y M et al. Experimental study of a model digital space optical communication system with new quantum devices[J]. Applied Optics, 34, 2619-2622(1995).

    [4] Gou Z Y, Yang B D, Zhao H S et al. Faraday anomalous dispersion atomic optical filter based on commercial-type hollow cathode lamp[J]. Acta Optica Sinica, 43, 0423001(2023).

    [5] Popescu A, Walther T. On an ESFADOF edge-filter for a range resolved Brillouin-lidar: the high vapor density and high pump intensity regime[J]. Applied Physics B, 98, 667-675(2010).

    [6] Li F Q, Wang Y P, Cheng X W et al. Faraday anomalous dispersion optical filter atomic frequency-stabilized semiconductor laser through optical feedback[J]. Chinese Journal of Lasers, 32, 1317-1320(2005).

    [7] Zhang Y D, Jia X L, Bi Y et al. Filter performance of a cesium faraday optical filter at 852 nm[J]. Chinese Physics Letters, 19, 807-809(2002).

    [8] Luo B, Yin L F, Xiong J Y et al. Signal intensity influences on the atomic Faraday filter[J]. Optics Letters, 43, 2458-2461(2018).

    [9] Liu Y, Yang B D, Wang J M et al. Demonstration of Faraday anomalous dispersion optical filter with reflection configuration[J]. Chinese Physics B, 31, 017804(2022).

    [10] Liu S Q, Zhang Y D, He Z S. Study on Cs 852 nm Faraday anomalous dispersion optical filter[J]. Chinese Journal of Lasers, 36, 110-113(2009).

    [11] Ling L, Bi G. Isotope 87Rb Faraday anomalous dispersion optical filter at 420 nm[J]. Optics Letters, 39, 3324-3327(2014).

    [12] Tao Z M, Hong Y L, Luo B et al. Diode laser operating on an atomic transition limited by an isotope ⁸⁷Rb Faraday filter at 780 nm[J]. Optics Letters, 40, 4348-4351(2015).

    [13] Yan Y, Yuan J P, Wang L R et al. A dual-wavelength bandpass Faraday anomalous dispersion optical filter operating on the D1 and D2 lines of rubidium[J]. Optics Communications, 509, 127855(2022).

    [14] Rudolf A, Walther T. High-transmission excited-state Faraday anomalous dispersion optical filter edge filter based on a Halbach cylinder magnetic-field configuration[J]. Optics Letters, 37, 4477-4479(2012).

    [15] Sun Q Q, Hong Y L, Zhuang W et al. Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp[J]. Applied Physics Letters, 101, 211102(2012).

    [16] Wang Y F, Zhang S N, Wang D Y et al. Nonlinear optical filter with ultranarrow bandwidth approaching the natural linewidth[J]. Optics Letters, 37, 4059-4061(2012).

    [17] Bi G, Kang J, Fu J et al. Ultra-narrow linewidth optical filter based on Faraday effect at isotope 87Rb 420 nm transitions[J]. Physics Letters A, 380, 4022-4026(2016).

    [18] Zhuang W, Zhao Y, Wang S K et al. Ultranarrow bandwidth Faraday atomic filter approaching natural linewidth based on cold atoms[J]. Chinese Optics Letters, 19, 030201(2021).

    [19] Tan Z, Sun X P, Luo J et al. Ultranarrow bandwidth tunable atomic filter via quantum interference-induced polarization rotation in Rb vapor[J]. Chinese Optics Letters, 12, 121404(2014).

    [20] Luo B, Yin L F, Xiong J Y et al. Induced-dichroism-excited atomic line filter at 1529 nm[J]. IEEE Photonics Technology Letters, 30, 1551-1554(2018).

    [21] He Z S, Zhang Y D, Liu S Q et al. A rubidium laser induced dispersion optical filter at 775.9 nm[J]. Chinese Journal of Lasers, 35, 488-490(2008).

    [22] Gayen S K, Billmers R I, Yang G N et al. Induced-dichroism-excited atomic line filter at 532 nm[J]. Optics Letters, 20, 1427-1429(1995).

    [23] He Z S, Zhang Y D, Wu H et al. Theoretical model for an atomic optical filter based on optical anisotropy[J]. Journal of the Optical Society of America B, 26, 1755-1759(2009).

    [24] Zhang J F, Ren Y N, Wang J M et al. Investigation of the two-color polarization spectroscopy between the excited states based on cesium atoms[J]. Acta Physica Sinica, 68, 113201(2019).

    [25] Carr C, Adams C S, Weatherill K J. Polarization spectroscopy of an excited state transition[J]. Optics Letters, 37, 118-120(2012).

    [26] Wang Y F, Zhang X G, Wang D Y et al. Cs Faraday optical filter with a single transmission peak resonant with the atomic transition at 455 nm[J]. Optics Express, 20, 25817-25825(2012).

    [27] Yang B D, Gou Z Y, Wang J M et al. Doppler-free dual-excited state spectroscopy and its application for measurement of hyperfine structure of 6D5/2 level of 133Cs[J]. Applied Physics B, 128, 212(2022).

    [28] Fort C, Cataliotti F S, Raspollini P et al. Optical double-resonance spectroscopy of trapped Cs atoms: hyperfine structure of the 8s and 6d excited states[J]. Zeitschrift Für Physik D Atoms, Molecules and Clusters, 34, 91-95(1995).

    [29] Yang B D, Zhang J F, Wang J M. Narrow linewidth two-color polarization spectroscopy due to the atomic coherence effect in a ladder-type atomic system[J]. Chinese Optics Letters, 17, 093001(2019).

    [30] Tanasittikosol M, Carr C, Adams C S et al. Subnatural linewidths in two-photon excited-state spectroscopy[J]. Physical Review A, 85, 033830(2012).

    [31] Mohapatra A K, Jackson T R, Adams C S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency[J]. Physical Review Letters, 98, 113003(2007).

    [32] Chakrabarti A, Ray A. Exploring hyperfine levels of non-Rydberg excited states in a system using Autler-Townes splitting[J]. Applied Optics, 59, 735-741(2020).

    [33] Tao Z M, Zhang X G, Chen M et al. Cs 728 nm excited state Faraday anomalous dispersion optical filter with indirect pump[J]. Physics Letters A, 380, 2150-2153(2016).

    [34] Xue X B, Tao Z M, Sun Q Q et al. Faraday anomalous dispersion optical filter with a single transmission peak using a buffer-gas-filled rubidium cell[J]. Optics Letters, 37, 2274-2276(2012).

    Tools

    Get Citation

    Copy Citation Text

    Hanshuai Zhao, Baodong Yang, Zhao Xue, Lanlan Zheng. Experimental Study on Ultra‑narrow Bandwidth Optical Filters with Excited States of Cesium Atoms[J]. Chinese Journal of Lasers, 2024, 51(5): 0508001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: nonlinear optics

    Received: Sep. 22, 2023

    Accepted: Nov. 8, 2023

    Published Online: Mar. 5, 2024

    The Author Email: Yang Baodong (ybd@sxu.edu.cn)

    DOI:10.3788/CJL231228

    CSTR:32183.14.CJL231228

    Topics