Chinese Journal of Lasers, Volume. 39, Issue 8, 802009(2012)
Characteristic Analysis on Photonic Crystal Laser Cavity with One-Dimensional Photonic Bandgap
[1] [1] O. Painter, R. K. Lee, A. Scherer et al.. Two-dimensional photonic band-gap defect mode laser[J]. Science, 1999, 284(5421): 1819~1821
[2] [2] K. Nozaki, S. Kita, T. Baba. Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser[J]. Opt. Express, 2007, 15(12): 7506~7514
[3] [3] J. K. Hwang, H. Y. Ryu, D. S. Song et al.. Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm[J]. IEEE Photon. Technol. Lett., 2000, 12(10): 1295~1297
[4] [4] M. Notomi, H. Suzuki, T. Tamamura. Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps[J]. Appl. Phys. Lett., 2001, 78(10): 1325
[5] [5] B. H. Ahn, J. H. Kang, M. K. Kim et al.. One-dimensional parabolic-beam photonic crystal laser[J]. Opt. Express, 2010, 18(6): 5654~5660
[6] [6] Q. Quan, I. B. Burgess, S. K. Y. Tang et al.. High-Q, low index-contrast polymeric photonic crystal nanobeam cavities[J]. Opt. Express, 2011, 19(22): 22191~22197
[7] [7] I. W. Frank, P. B. Deotare, M. W. McCutcheon et al.. Programmable photonic crystal nanobeam cavities[J]. Opt. Express, 2010, 18(8): 8705~8712
[8] [8] Y. Zhang, M. Khan, Y. Huang et al.. Photonic crystal nanobeam lasers[J]. Appl. Phys. Lett., 2010, 97(5): 051104
[9] [9] E. Kuramochi, H. Taniyama, T. Tanabe et al.. Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings[J]. Opt. Express, 2010, 18(15): 15859~15869
[10] [10] M. Notomi, E. Kuramochi, H. Taniyama. Ultrahigh-Q nanocavity with 1D photonic gap[J]. Opt. Express, 2008, 16(15): 11095~11102
[11] [11] J. S. Foresi, P. R. Villeneuve, J. Ferrera et al.. Photonic-bandgap microcavities in optical waveguides[J]. Nature, 1997, 390(6656): 143~145
[12] [12] S. Shi, C. Chen, D. W. Prather. Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers[J]. J. Opt. Soc. Am. A, 2004, 21(9): 1769~1775
[13] [13] R. Luebbers, F. P. Hunsberger, K. S. Kunz et al.. A frequency-dependent finite-difference time-domain formulation for dispersive materials[J]. IEEE Transactions on, Electromagnetic Compatibility, 1990, 32(3): 222~227
[14] [14] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett., 1987, 58(20): 2059~2062
[15] [15] T. Baba, D. Sano. Low-threshold lasing and Purcell effect in microdisk lasers at room temperature[J]. J. Sel. Top. Quantum Electron., 2003, 9(5): 1340~1346
[16] [16] P. Lalanne, J. P. Hugonin. Bloch-wave engineering for high-Q, small-V microcavities[J]. IEEE J. Quantum Electron., 2003, 39(11): 1430~1438
[17] [17] D. Peyrade, E. Silberstein, P. Lalanne et al.. Short Bragg mirrors with adiabatic modal conversion[J]. Appl. Phys. Lett., 2002, 81(5): 829~831
[18] [18] S. G. Johnson, S. Fan, P. R. Villeneuve et al.. Guided modes in photonic crystal slabs[J]. Phys. Rev. B, 1999, 60(8): 5751~5758
[20] [20] Chen Chen, Yang Yongying, Wang Daodang et al.. Analysis of point-diffraction wavefront error based on finite difference time domain method[J]. Chinese J. Lasers, 2011, 38(9): 0908003
Get Citation
Copy Citation Text
Feng Chen, Feng Guoying, Zhou Hao, Chen Nianjiang, Zhou Shouhuan. Characteristic Analysis on Photonic Crystal Laser Cavity with One-Dimensional Photonic Bandgap[J]. Chinese Journal of Lasers, 2012, 39(8): 802009
Category: Laser physics
Received: May. 14, 2012
Accepted: --
Published Online: Jul. 9, 2012
The Author Email: Chen Feng (feng_chen718@hotmail.com)