Journal of Quantum Optics, Volume. 27, Issue 2, 94(2021)
Suppressing Amplitude-type Noise in Fiber Optic Weak Value Amplification
[1] [1] Aharonov Y, Albert D Z, Vaidman L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100[J]. Physical Review Letters, 1988, 60(14): 1351. DOI: 10.1103/ PhysRevLett.60.1351.
[2] [2] Hosten O, Kwiat P. Observation of the spin Hall effect of light via weak measurements[J]. Science, 2008, 319(5864): 787-790. DOI: 10.1126/science.1152697.
[3] [3] Dixon P B, Starling D J, Jordan A N, Howell J C. Ultrasensitive beam deflection measurement via interferometric weak value amplification[J]. Physical Review Letters, 2009, 102(17): 173601. DOI: 10.1103/ PhysRevLett.102.173601.
[4] [4] Brunner N, Simon C. Measuring small longitudinal phase shifts: weak measurements or standard interferometry?[J]. Physical Review Letters, 2010, 105(1): 010405. DOI: 10.1103/PhysRevLett.105.010405.
[5] [5] Xu X Y, Kedem Y, Sun K, et al. Phase estimation with weak measurement using a white light source[J]. Physical Review Letters, 2013, 111(3): 033604. DOI: 10.1103/PhysRevLett.111.033604.
[6] [6] Li H, Huang J Z, Yu Y, et al. High-precision temperature measurement based on weak measurement using nematic liquid crystals[J]. Applied Physics Letters, 2018, 112(23): 231901. DOI: 10.1063/1.5027117.
[7] [7] Dziewior J, Knips L, Farfurnik D, et al. Universality of local weak interactions and its application for interferometric alignment[J]. Proceedings of the National Academy of Sciences, 2019, 116(8): 2881-2890. DOI: 10.1073/pnas.1812970116.
[8] [8] Jordan A N, Martínez-Rincón J, Howell J C. Technical advantages for weak-value amplification: when less is more[J]. Physical Review X, 2014, 4(1): 011031. DOI: 10.1103/PhysRevX.4.011031.
[9] [9] Viza G I, Martínez-Rincón J, Alves G B, et al. Experimentally quantifying the advantages of weak-value-based metrology[J]. Physical Review A, 2015, 92(3): 032127. DOI: 10.1103/ PhysRevA. 92. 032127.
[10] [10] Alves G B, Pimentel A, Hor-Meyll M, Walborn S P, Davidovich L, de Matos Filho R L. Achieving metrological precision limits through postselection[J]. Physical Review A, 2017, 95(1): 012104. DOI: 10.1103/PhysRevA.95.012104.
[11] [11] Xu L, Liu Z, Datta A, et al. Approaching quantum-limited metrology with imperfect detectors by using weak-value amplification[J]. Phys Rev Lett, 2020, 125: 080501. DOI: 10.1103/PhysRevLett. 125. 080501.
[12] [12] Yin S, Ruffin P. Fiber Optic Sensors[M]. American Cancer Society, 2006. DOI: 10.1002/9780471740360.ebs0480.
[13] [13] Tsubokawa M, Higashi T, Negishi Y. Mode couplings due to external forces distributed along a polarization-maintaining fiber: an evaluation[J]. Applied Optics, 1988, 27(1): 166-173. DOI: 10.1364/AO.27.000166.
[14] [14] VanWiggeren G D, Roy R. Transmission of linearly polarized light through a single-mode fiber withrandom fluctuations of birefringence[J]. Applied Optics, 1999, 38(18): 3888-3892. DOI: 10.1364/AO.38.003888.
[15] [15] Xu T, Tang F, Jing W, et al. Distributed measurement of mode coupling in birefringent fibers with random polarization modes[J]. Opt Appl, 2009, 39(1): 77--90.
[16] [16] Fang Z, Yang F, Cai H, Qu R. Coupled-mode equation of polarization modes of twisted birefringentfibers in a unified coordinate[J]. Applied Optics, 2013, 52(3): 530-537. DOI: 10.1364/AO.52.000530.
[17] [17] Dandridge A, Tveten A B. Noise reduction in fiber-optic interferometer systems[J]. Applied Optics, 1981, 20(14): 2337-2339. DOI: 10.1364/AO.20.002337.
[18] [18] Bass M, DeCusatis C, Enoch J, et al. Handbook of optics, Volume II: Design, fabrication and testing, sources and detectors, radiometry and photometry[M]. McGraw-Hill Inc, 2009. ISBN: 9780071498906.
[19] [19] Huang J Z, Fang C, Zeng G. Weak-value-amplification metrology without spectral analysis[J]. Physical Review A, 2018, 97(6): 063853. DOI: 10.1103/PhysRevA.97.063853.
[20] [20] Luo Z, Yang Y, Wang Z, et al. Low-frequency fiber optic hydrophone based on weak value amplification[J]. Optics Express, 2020, 28(18): 25935. DOI: 10.1364/OE.400373.
[21] [21] Huang J, Li Y, Fang C, Li H, Zeng G. Toward ultrahigh sensitivity in weak-value amplification[J]. Physical Review A, 2019, 100(1): 012109. DOI: 10.1103/PhysRevA.100.012109.
[22] [22] Jozsa R. Complex weak values in quantum measurement[J]. Physical Review A, 2007, 76(4): 044103. DOI: 10.1103/PhysRevA.76.044103.
[23] [23] Zhang Z H, Chen G, Xu X Y, et al. Ultrasensitive biased weak measurement for longitudinal phase estimation[J]. Physical Review A, 2016, 94(5): 053843. DOI: 10.1103/ PhysRevA.94.053843.
[24] [24] Strübi G, Bruder C. Measuring ultrasmall time delays of light by joint weak measurements[J]. Physical Review Letters, 2013, 110(8): 083605. DOI: 10.1103/PhysRevLett.110.083605.
[25] [25] Fang C, Huang J Z, Yu Y, et al. Ultra-small time-delay estimation via a weak measurement technique with post-selection[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49(17): 175501. DOI: 10.1088/0953-4075/49/17/175501.
[26] [26] Martínez-Rincón J, Liu W T, Viza G I, Howell J C. Can anomalous amplification be attained without postselection?[J]. Physical Review Letters, 2016, 16(10): 100803. DOI: 10.1103/PhysRevLett.116.100803.
[27] [27] Li Y, Li H, Huang J, et al. High-precision temperature sensor based on weak measurement[J]. Optics Express, 2019, 27(15): 21455-21462. DOI: 10.1364/OE.27.021455.
[28] [28] Oppenheim A V. Discrete-time signal processing[M]. Pearson Education India; 1999. ISBN: 0130834432.
Get Citation
Copy Citation Text
HUANG Chao-zheng, HUANG Jing-zheng, ZHAO Dong-zi, LI Hong-jing, ZENG Gui-hua. Suppressing Amplitude-type Noise in Fiber Optic Weak Value Amplification[J]. Journal of Quantum Optics, 2021, 27(2): 94
Category:
Received: Dec. 2, 2020
Accepted: --
Published Online: Sep. 13, 2021
The Author Email: HUANG Jing-zheng (jzhuang1983@sjtu.edu.cn)