Chinese Journal of Lasers, Volume. 50, Issue 14, 1400001(2023)

Research Progress of Femtosecond Laser-Induced Multifilament Generation and Regulation

Junhao Cheng1, Lixiang Hu1、*, Tiejun Wang2, Jian Luo1, Fangpei Zhang3, and Tongpu Yu1、**
Author Affiliations
  • 1College of Sciences, National University of Defense Technology, Changsha 410073, Hunan, China
  • 2State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics and CAS Center for Excellence in Ultra-Intense Laser Science, Chinese Academy of Sciences, Shanghai 201800, China
  • 3Information Science Academy of China Electronics Technology Group Corporation, Beijing 100086, China
  • show less
    References(99)

    [1] Braun A, Korn G, Liu X et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 20, 73-75(1995).

    [2] Marburrger J, Wagner W. Self-focusing as a pulse sharpening mechanism[J]. IEEE Journal of Quantum Electronics, 3, 415-416(1967).

    [3] Béjot P, Kasparian J, Henin S et al. Higher-order Kerr terms allow ionization-free filamentation in gases[J]. Physical Review Letters, 104, 103903(2010).

    [4] Béjot P, Hertz E, Kasparian J et al. Transition from plasma-driven to Kerr-driven laser filamentation[J]. Physical Review Letters, 106, 243902(2011).

    [5] Liu W, Chin S L. Direct measurement of the critical power of femtosecond Ti∶sapphire laser pulse in air[J]. Optics Express, 13, 5750-5755(2005).

    [6] Wang T J, Chen N, Guo H et al. Principle and research progress of atmospheric remote sensing by intense femtosecond lasers[J]. Laser&Optoelectronics Progress, 59, 0700001(2022).

    [7] Shen Y R. Self-focusing: experimental[J]. Progress in Quantum Electronics, 4, 1-34(1975).

    [8] Marburger J H. Self-focusing: theory[J]. Progress in Quantum Electronics, 4, 35-110(1975).

    [9] Mlejnek M, Wright E M, Moloney J V. Dynamic spatial replenishment of femtosecond pulses propagating in air[J]. Optics Letters, 23, 382-384(1998).

    [10] Wang X Y, Wang Z J, Peng B et al. Study on dynamic measurement of femtosecond filaments based on time-stretch technology[J]. Laser&Optoelectronics Progress, 59, 1336001(2022).

    [11] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 441, 47-189(2007).

    [12] Bergé L, Skupin S, Nuter R et al. Ultrashort filaments of light in weakly ionized, optically transparent media[J]. Reports on Progress in Physics, 70, 1633-1713(2007).

    [13] Yoon J W, Jeon C, Shin J et al. Achieving the laser intensity of 5.5×1022 W/cm2 with a wavefront-corrected multi-PW laser[J]. Optics Express, 27, 20412-20420(2019).

    [14] Yoon J W, Kim Y G, Choi I W et al. Realization of laser intensity over 1023 W/cm2[J]. Optica, 8, 630-635(2021).

    [15] Li X L, Zhou Y E, Bi T F et al. Review on key technologies of lightweight type-aware LiDAR[J]. Chinese Journal of Lasers, 49, 1910002(2022).

    [16] Gravel J F, Luo Q, Boudreau D et al. Sensing of halocarbons using femtosecond laser-induced fluorescence[J]. Analytical Chemistry, 76, 4799-4805(2004).

    [17] Xu H L, Cheng Y, Chin S L et al. Femtosecond laser ionization and fragmentation of molecules for environmental sensing[J]. Laser & Photonics Review, 9, 275-293(2015).

    [18] Chin S L, Xu H L, Luo Q et al. Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source[J]. Applied Physics B, 95, 1-12(2009).

    [19] Xu H L, Chin S L. Femtosecond laser filamentation for atmospheric sensing[J]. Sensors, 11, 32-53(2011).

    [20] Kasparian J, Sauerbrey R, Mondelain D et al. Infrared extension of the supercontinuum generated by femtosecond terawatt laser pulses propagating in the atmosphere[J]. Optics Letters, 25, 1397-1399(2000).

    [21] Liu J S, Schröder H, Chin S L et al. Space-frequency coupling, conical waves, and small-scale filamentation in water[J]. Physical Review A, 72, 053817(2005).

    [22] Wang Z X, Liu J S, Li R X et al. Wavefront control to generate ultraviolet supercontinuum by filamentation of few-cycle laser pulses in argon[J]. Optics Letters, 35, 163-165(2010).

    [23] Kandidov V P, Kosareva O G, Golubtsov I S et al. Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation)[J]. Applied Physics B, 77, 149-165(2003).

    [24] Hauri C P, Kornelis W, Helbing F W et al. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation[J]. Applied Physics B, 79, 673-677(2004).

    [25] Liu J S, Li R X, Xu Z Z. Few-cycle spatiotemporal soliton wave excited by filamentation of a femtosecond laser pulse in materials with anomalous dispersion[J]. Physical Review A, 74, 042801(2006).

    [26] Brodeur A, Chin S L. Ultrafast white-light continuum generation and self-focusing in transparent condensed media[J]. Journal of the Optical Society of America B, 16, 637-650(1999).

    [27] Liu J S, Schröder H, Chin S L et al. Nonlinear propagation of fs laser pulses in liquids and evolution of supercontinuum generation[J]. Optics Express, 13, 10248-10259(2005).

    [28] Kasparian J, Sauerbrey R, Chin S L. The critical laser intensity of self-guided light filaments in air[J]. Applied Physics B, 71, 877-879(2000).

    [29] Chen X W, Leng Y X, Liu J et al. Pulse self-compression in normally dispersive bulk media[J]. Optics Communications, 259, 331-335(2006).

    [30] Wang Z X, Liu J S, Li R X et al. Supercontinuum generation and pulse compression from gas filamentation of femtosecond laser pulses with different durations[J]. Optics Express, 17, 13841-13850(2009).

    [31] Shi S C, Hu M Y, Zhang Q S et al. Plasma grating induced breakdown spectroscopic detection of heavy metal elements in soil[J]. Chinese Journal of Lasers, 49, 1311002(2022).

    [32] Sudrie L, Franco M, Prade B et al. Study of damage in fused silica induced by ultra-short IR laser pulses[J]. Optics Communications, 191, 333-339(2001).

    [33] Zhan X P, Xu H L, Li C H et al. Remote and rapid micromachining of broadband low-reflectivity black silicon surfaces by femtosecond laser filaments[J]. Optics Letters, 42, 510-513(2017).

    [34] Kasparian J, Rodriguez M, Méjean G et al. White-light filaments for atmospheric analysis[J]. Science, 301, 61-64(2003).

    [35] Kasparian J, Wolf J P. Physics and applications of atmospheric nonlinear optics and filamentation[J]. Optics Express, 16, 466-493(2008).

    [36] Rohwetter P, Kasparian J, Stelmaszczyk K et al. Laser-induced water condensation in air[J]. Nature Photonics, 4, 451-456(2010).

    [37] Ju J J, Liu J S, Wang C et al. Laser-filamentation-induced condensation and snow formation in a cloud chamber[J]. Optics Letters, 37, 1214-1216(2012).

    [38] Ju J J, Liu J S, Sun H Y et al. Physical mechanism and research progress of femtosecond laser based artificial atmospheric modulation[J]. Chinese Journal of Lasers, 46, 0508004(2019).

    [39] Thul D, Bernath R, Bodnar N et al. The mobile ultrafast high energy laser facility-a new facility for high-intensity atmospheric laser propagation studies[J]. Optics and Lasers in Engineering, 140, 106519(2021).

    [40] Tzortzakis S, Sudrie L, Franco M et al. Self-guided propagation of ultrashort IR laser pulses in fused silica[J]. Physical Review Letters, 87, 213902(2001).

    [41] Bespalov V I, Talanov V I. Filamentary structure of light beams in nonlinear liquids[J]. Soviet Journal of Experimental and Theoretical Physics Letters, 3, 307(1966).

    [42] Chin S L, Talebpour A, Yang J et al. Filamentation of femtosecond laser pulses in turbulent air[J]. Applied Physics B, 74, 67-76(2002).

    [43] Chin S L, Petit S, Liu W et al. Interference of transverse rings in multifilamentation of powerful femtosecond laser pulses in air[J]. Optics Communications, 210, 329-341(2002).

    [44] Mlejnek M, Wright E M, Moloney J V. Power dependence of dynamic spatial replenishment of femtosecond pulses propagating in air[J]. Optics Express, 4, 223-228(1999).

    [45] Mlejnek M, Kolesik M, Wright E M et al. A dynamic spatial replenishment scenario for femtosecond pulses propagating in air-a route to optical turbulence?[J]. Laser Physics, 10, 107-110(2000).

    [46] Liu W, Gravel J F, Théberge F et al. Background reservoir: its crucial role for long-distance propagation of femtosecond laser pulses in air[J]. Applied Physics B, 80, 857-860(2005).

    [47] Liu W, Théberge F, Arévalo E et al. Experiment and simulations on the energy reservoir effect in femtosecond light filaments[J]. Optics Letters, 30, 2602-2604(2005).

    [48] Thul D, Richardson M, Fairchild S R. Spatially resolved filament wavefront dynamics[J]. Scientific Reports, 10, 8920(2020).

    [49] Thul D, Fairchild S R, Richardson M. Direct wavefront measurements of filaments in the assisted-collapse regime[J]. Optics Express, 27, 21253-21263(2019).

    [50] Mlejnek M, Kolesik M, Moloney J V et al. Optically turbulent femtosecond light guide in air[J]. Physical Review Letters, 83, 2938-2941(1999).

    [51] Kosareva O G, Nguyen T, Panov N A et al. Array of femtosecond plasma channels in fused silica[J]. Optics Communications, 267, 511-523(2006).

    [52] Cook K, Kar A K, Lamb R A. White light supercontinuum interference of self-focused filaments in water[J]. Applied Physics Letters, 83, 3861-3863(2003).

    [53] Esarey E, Sprangle P, Krall J et al. Self-focusing and guiding of short laser pulses in ionizing gases and plasmas[J]. IEEE Journal of Quantum Electronics, 33, 1879-1914(1997).

    [54] Perelomov A M, Popov V S, Terentev’EV M V. Ionization of atoms in an alternating electric field[J]. Sovirt Physics JETP, 23, 924-934(1966).

    [55] Couairon A, Tzortzakis S, Bergé L et al. Infrared femtosecond light filaments in air: simulations and experiments[J]. Journal of the Optical Society of America B, 19, 1117-1131(2002).

    [56] Xi T T. Theoretical study on propagation of ultra-intense femtosecond laser in atmosphere[D], 18-20(2008).

    [57] Brodeur A, Chien C Y, Ilkov F A et al. Moving focus in the propagation of ultrashort laser pulses in air[J]. Optics Letters, 22, 304-306(1997).

    [58] Dubietis A, Tamosauskas G, Fibich G et al. Multiple filamentation induced by input-beam ellipticity[J]. Optics Letters, 29, 1126-1128(2004).

    [59] Kandidov V P, Fedorov V Y. Properties of self-focusing of elliptic beams[J]. Quantum Electronics, 34, 1163-1168(2004).

    [60] Grow T D, Gaeta A L. Dependence of multiple filamentation on beam ellipticity[J]. Optics Express, 13, 4594-4599(2005).

    [61] Fedorov V Y, Kandidov V P, Kosareva O G et al. Filamentation of a femtosecond laser pulse with the initial beam ellipticity[J]. Laser Physics, 16, 1227-1234(2006).

    [62] Dubietis A. Formation of periodic multifilamentary structures by use of highly elliptic light beams[J]. Lithuanian Journal of Physics, 47, 27-30(2007).

    [63] Majus D, Jukna V, Valiulis G et al. Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams[J]. Physical Review A, 79, 033843(2009).

    [64] Majus D, Jukna V, Tamošauskas G et al. Three-dimensional mapping of multiple filament arrays[J]. Physical Review A, 81, 043811(2010).

    [65] Méchain G, Couairon A, Franco M et al. Organizing multiple femtosecond filaments in air[J]. Physical Review Letters, 93, 035003(2004).

    [66] Liu J S, Schroeder H, Chin S L et al. Ultrafast control of multiple filamentation by ultrafast laser pulses[J]. Applied Physics Letters, 87, 161105(2005).

    [67] Kandidov V P, Dormidonov A E, Kosareva O G et al. Optimum small-scale management of random beam perturbations in a femtosecond laser pulse[J]. Applied Physics B, 87, 29-36(2007).

    [68] Zvorykin V D, Goncharov S A, Ionin A A et al. Arrangement of multiple UV filaments by periodic amplitude masks[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 402, 331-335(2017).

    [69] Guo Y J, Wang J J, Lin J Q. Manipulation of femtosecond laser filamentation by a gaseous lattice[J]. Optics Express, 28, 37362-37372(2020).

    [70] Guo K M, Lin J Q, Hao Z Q et al. Triggering and guiding high-voltage discharge in air by single and multiple femtosecond filaments[J]. Optics Letters, 37, 259-261(2012).

    [71] Rodriguez M, Sauerbrey R, Wille H et al. Triggering and guiding megavolt discharges by use of laser-induced ionized filaments[J]. Optics Letters, 27, 772-774(2002).

    [72] Châteauneuf M, Payeur S, Dubois J et al. Microwave guiding in air by a cylindrical filament array waveguide[J]. Applied Physics Letters, 92, 091104(2008).

    [73] Ren Y, Alshershby M, Hao Z Q et al. Microwave guiding along double femtosecond filaments in air[J]. Physical Review E, 88, 013104(2013).

    [74] Panov N A, Kosareva O G, Murtazin I N. Ordered filaments of a femtosecond pulse in the volume of a transparent medium[J]. Journal of Optical Technology, 73, 778-785(2006).

    [75] Hauri C P, Gautier J, Trisorio A et al. Two-dimensional organization of a large number of stationary optical filaments by adaptive wave front control[J]. Applied Physics B, 90, 391-394(2008).

    [76] Rohwetter P, Queißer M, Stelmaszczyk K et al. Laser multiple filamentation control in air using a smooth phase mask[J]. Physical Review A, 77, 013812(2008).

    [77] Liu L, Wang C, Cheng Y et al. Fine control of multiple femtosecond filamentation using a combination of phase plates[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 44, 215404(2011).

    [78] Fu Y, Gao H, Chu W et al. Control of filament branching in air by astigmatically focused femtosecond laser pulses[J]. Applied Physics B, 103, 435-439(2011).

    [79] Gao H, Chu W, Yu G L et al. Femtosecond laser filament array generated with step phase plate in air[J]. Optics Express, 21, 4612-4622(2013).

    [80] Pushkarev D, Shipilo D, Lar’kin A et al. Effect of phase front modulation on the merging of multiple regularized femtosecond filaments[J]. Laser Physics Letters, 15, 045402(2018).

    [81] Liu J P, Tian X Q, Chu C Y et al. Effect of beam ellipticity on femtosecond laser multi-filamentation regulated by π-phase plate[J]. Laser Physics Letters, 17, 085402(2020).

    [82] Sun X D, Gao H, Zeng B et al. Multiple filamentation generated by focusing femtosecond laser with axicon[J]. Optics Letters, 37, 857-859(2012).

    [83] Camino A, Hao Z Q, Liu X et al. High spectral power femtosecond supercontinuum source by use of microlens array[J]. Optics Letters, 39, 747-750(2014).

    [84] Barbieri N, Hosseinimakarem Z, Lim K et al. Helical filaments[J]. Applied Physics Letters, 104, 261109(2014).

    [85] Xi T T, Zhao Z J, Hao Z Q. Femtosecond laser filamentation with a microlens array in air[J]. Journal of the Optical Society of America B, 32, 163-166(2015).

    [86] Wang D, Liu G G, Lü J Q et al. Femtosecond polarization-structured optical field meets an anisotropic nonlinear medium[J]. Optics Express, 26, 27726-27747(2018).

    [87] Li S M, Ren Z C, Kong L J et al. Unveiling stability of multiple filamentation caused by axial symmetry breaking of polarization[J]. Photonics Research, 4, 29-34(2016).

    [88] Fairchild S R, Walasik W, Kepler D et al. Free-space nonlinear beam combining for high intensity projection[J]. Scientific Reports, 7, 10147(2017).

    [89] Reyes D, Peña J, Walasik W et al. Filament conductivity enhancement through nonlinear beam interaction[J]. Optics Express, 28, 26764-26773(2020).

    [90] Schröder H, Liu J, Chin S L. From random to controlled small-scale filamentation in water[J]. Optics Express, 12, 4768-4774(2004).

    [91] Li H L, Zang H W, Huang Q L et al. Polarization-orthogonal filament array induced by birefringent crystals in air[J]. Optics Express, 26, 8515-8521(2018).

    [92] Luo Q, Hosseini S A, Liu W et al. Effect of beam diameter on the propagation of intense femtosecond laser pulses[J]. Applied Physics B, 80, 35-38(2005).

    [93] Sun X D, Xu S Q, Zhao J Y et al. Impressive laser intensity increase at the trailing stage of femtosecond laser filamentation in air[J]. Optics Express, 20, 4790-4795(2012).

    [94] Fibich G, Eisenmann S, Ilan B et al. Control of multiple filamentation in air[J]. Optics Letters, 29, 1772-1774(2004).

    [95] Pfeifer T, Gallmann L, Abel M J et al. Circular phase mask for control and stabilization of single optical filaments[J]. Optics Letters, 31, 2326-2328(2006).

    [96] Fu Y X, Xiong H, Xu H et al. Generation of extended filaments of femtosecond pulses in air by use of a single-step phase plate[J]. Optics Letters, 34, 3752-3754(2009).

    [97] Hao Z Q, Zhang J, Xi T T et al. Optimization of multiple filamentation of femtosecond laser pulses in air using a pinhole[J]. Optics Express, 15, 16102-16109(2007).

    [98] Polynkin P, Kolesik M, Roberts A et al. Generation of extended plasma channels in air using femtosecond Bessel beams[J]. Optics Express, 16, 15733-15740(2008).

    [99] Song Z M, Zhang Z G, Nakajima T. Transverse-mode dependence of femtosecond filamentation[J]. Optics Express, 17, 12217-12229(2009).

    Tools

    Get Citation

    Copy Citation Text

    Junhao Cheng, Lixiang Hu, Tiejun Wang, Jian Luo, Fangpei Zhang, Tongpu Yu. Research Progress of Femtosecond Laser-Induced Multifilament Generation and Regulation[J]. Chinese Journal of Lasers, 2023, 50(14): 1400001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: reviews

    Received: Jul. 1, 2022

    Accepted: Sep. 1, 2022

    Published Online: Jul. 10, 2023

    The Author Email: Hu Lixiang (hulixiang@nudt.edu.cn), Yu Tongpu (tongpu@nudt.edu.cn)

    DOI:10.3788/CJL221015

    Topics