Journal of Synthetic Crystals, Volume. 50, Issue 6, 1036(2021)
Hydrothermal Synthesis of CsxWO3 Nanorods and Their Infrared Absorption Properties
[1] [1] TAKEDA H, ADACHI K. Near infrared absorption of tungsten oxide nanoparticle dispersions[J]. Journal of the American Ceramic Society, 2007, 90(12): 4059-4061.
[2] [2] HUANG L, TANG H, BAI Y J, et al. Preparation of monodispersed Cs0.33WO3 nanocrystals by mist chemical vapor deposition for near-infrared shielding application[J]. Nanomaterials, 2020, 10(11): 2295.
[3] [3] LIU J X, FAN C Y, SHI F, et al. Fabrication of Cs0.32WO3/SiO2 aerogel multilayer composite coating for thermal insulation applications[J]. Materials Letters, 2016, 181: 140-143.
[4] [4] YU Z Y, YAO Y J, YAO J N, et al. Transparent wood containing CsxWO3 nanoparticles for heat-shielding window applications[J]. Journal of Materials Chemistry A, 2017, 5(13): 6019-6024.
[5] [5] GUO W, GUO C S, ZHENG N N, et al. CsxWO3 nanorods coated with polyelectrolyte multilayers as a multifunctional nanomaterial for bimodal imaging-guided photothermal/photodynamic cancer treatment[J]. Advanced Materials, 2017, 29(4): 1604157.
[6] [6] ZHANG Y X, LI B, CAO Y J, et al. Na0.3WO3 nanorods: a multifunctional agent for in vivo dual-model imaging and photothermal therapy of cancer cells[J]. Dalton Transactions, 2015, 44(6): 2771-2779.
[7] [7] LI G L, GUO C S, YAN M, et al. CsxWO3 nanorods: realization of full-spectrum-responsive photocatalytic activities from UV, visible to near-infrared region[J]. Applied Catalysis B: Environmental, 2016, 183: 142-148.
[8] [8] LIU B, YIN S, WU X Y, et al. Graphene/MxWO3 (M=Na, K) nanohybrids with excellent electrical properties[J]. Carbon, 2015, 94: 309-316.
[9] [9] GUO C S, YIN S, SATO T. Synthesis of one-dimensional hexagonal sodium tungsten oxide and its near-infrared shielding property[J]. Nanoscience and Nanotechnology Letters, 2011, 3(3): 413-416.
[10] [10] GUO C S, YIN S, HUANG L, et al. Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property[J]. ACS Applied Materials & Interfaces, 2011, 3(7): 2794-2799.
[11] [11] GUO C S, YIN S, DONG Q, et al. Near-infrared absorption properties of RbxWO3 nanoparticles[J]. Cryst Eng Comm, 2012, 14(22): 7727-7732.
[12] [12] GUO C S, YIN S, YAN M, et al. Facile synthesis of homogeneous CsxWO3 nanorods with excellent low-emissivity and NIR shielding property by a water controlled-release process[J]. Journal of Materials Chemistry, 2011, 21(13): 5099-5105.
[13] [13] GUO C S, YIN S, DONG Q, et al. Simple route to (NH4)xWO3 nanorods for near infrared absorption[J]. Nanoscale, 2012, 4(11): 3394-3398.
[14] [14] MATTOX T M, BERGERUD A, AGRAWAL A, et al. Influence of shape on the surface plasmon resonance of tungsten bronze nanocrystals[J]. Chemistry of Materials, 2014, 26(5): 1779-1784.
[15] [15] CHOI J, MOON K, KANG I, et al. Preparation of quaternary tungsten bronze nanoparticles by a thermal decomposition of ammonium metatungstate with oleylamine[J]. Chemical Engineering Journal, 2015, 281: 236-242.
[16] [16] LIU J X, CHEN B, FAN C Y, et al. Controllable synthesis of small size CsxWO3 nanorods as transparent heat insulation film additives[J]. CrystEngComm, 2018, 20(11): 1509-1519.
[17] [17] LIU J X, LUO J Y, SHI F, et al. Synthesis and characterization of F-doped Cs0.33WO3-xFx particles with improved near infrared shielding ability[J]. Journal of Solid State Chemistry, 2015, 221: 255-262.
[20] [20] LIU G X, WANG S N, NIE Y T, et al. Electrostatic-induced synthesis of tungsten bronze nanostructures with excellent photo-to-thermal conversion behavior[J]. Journal of Materials Chemistry A, 2013, 1(35): 10120.
[21] [21] KIM J, AGRAWAL A, KRIEG F, et al. The interplay of shape and crystalline anisotropies in plasmonic semiconductor nanocrystals[J]. Nano Letters, 2016, 16(6): 3879-3884.
[22] [22] MENG Z C, FUJII A, HASHISHIN T, et al. Morphological and crystal structural control of tungsten trioxide for highly sensitive NO2 gas sensors[J]. Journal of Materials Chemistry C, 2015, 3(5): 1134-1141.
[23] [23] CHEN L, LAM S, ZENG Q H, et al. Effect of cation intercalation on the growth of hexagonal WO3 nanorods[J]. The Journal of Physical Chemistry C, 2012, 116(21): 11722-11727.
[24] [24] UNGUREANU C, RAYAVARAPU R G, MANOHAR S, et al. Discrete dipole approximation simulations of gold nanorod optical properties: choice of input parameters and comparison with experiment[J]. Journal of Applied Physics, 2009, 105(10): 102032.
[25] [25] MOURDIKOUDIS S, LIZ-MARZN L M. Oleylamine in nanoparticle synthesis[J]. Chemistry of Materials, 2013, 25(9): 1465-1476.
Get Citation
Copy Citation Text
XIONG Yuanpeng, LI Ruixing, ZHANG Yue, KONG Fandong, ZHONG Qi. Hydrothermal Synthesis of CsxWO3 Nanorods and Their Infrared Absorption Properties[J]. Journal of Synthetic Crystals, 2021, 50(6): 1036
Category:
Received: Jan. 21, 2021
Accepted: --
Published Online: Aug. 23, 2021
The Author Email: XIONG Yuanpeng (jcijxcn02@163.com)
CSTR:32186.14.