Acta Photonica Sinica, Volume. 51, Issue 12, 1217002(2022)

Micron Polarization-sensitive Spectral-domain Optical Coherence Tomography Based on Single Camera

Zhiyuan QIU1, Wanrong GAO1、*, Chaoliang CHEN2, and Ying CHANG1
Author Affiliations
  • 1School of Electronic Engineering and Optoelectronic Technique,Nanjing University of Science and Technology,Nanjing 210094,China
  • 2School of Electronic Science & Engineering,Southeast University,Nanjing 210096,China
  • show less
    References(35)

    [1] LIU L, GARDECKI J A, NADKARNI S K et al. Imaging the subcellular structure of human coronary atherosclerosis using 1-μm resolution optical coherence tomography (uOCT)[J]. Nature Medicine, 17, 1010-1014(2013).

    [2] LEITGEB R, HITZENBERGER C, FERCHER A. Performance of fourier domain vs. time domain optical coherence tomography[J]. Optics Express, 11, 889-894(2003).

    [3] BLANCH R J, MICIELI J A, OYESIKU N M et al. Optical coherence tomography retinal ganglion cell complex analysis for the detection of early chiasmal compression[J]. Pituitary, 21, 515-523(2018).

    [4] PIERCE M C, STRASSWIMMER J, PARK B Het a1. Advances in optical coherence tomography imaging for dermatology[J]. Invest Dermatol, 123, 458-463(2004).

    [5] WU Xiupin, GAO Wanrong, ZHANG Yunxu et al. New method for non-destructive quantitative measurement of subsurface damage within glass[J]. Chinese Journal of Lasers, 44, 163-170(2017).

    [6] WANG Changming, GAO Wanrong. Measurement of scattering coefficient of glass subsurface defects based on micron SDOCT[J]. Acta Optica Sinica, 41, 0729001(2021).

    [7] BOER J F D, HITZENBERGER C K, YASUNO Y. Polarization sensitive optical coherence tomography - a review [Invited][J]. Biomedical Optics Express, 8, 1838-1873(2017).

    [8] DING Z, LIANG C P, CHEN Y. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography[J]. Frontiers of Optoelectronics, 8, 128-140(2015).

    [9] PARK B H, SAXER C, SRINIVAS S M et al. In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography[J]. Journal of Biomedical Optics, 6, 474-479(2001).

    [10] TETSCHKE F, GOLDE J, WALTHER J et al. Visualization of interfacial adhesive defects at dental restorations with spectral domain and polarization sensitive optical coherence tomography[J]. Current Directions in Biomedical Engineering, 4, 559-562(2018).

    [11] NANDY S, HELLAND T L, ROOP B W et al. Rapid non-destructive volumetric tumor yield assessment in fresh lung core needle biopsies using polarization sensitive optical coherence tomography[J]. Biomedical Optics Express, 12, 5597-5613(2021).

    [12] JIANG H, CHEN W, DELGADO S et al. Altered birefringence of peripapillary retinal nerve fiber layer in multiple sclerosis measured by polarization sensitive optical coherence tomography[J]. Eye and Vision, 5, 1-7(2018).

    [13] CUI D Y, LIU X Y, ZHANG J et al. Dual spectrometer system with spectral compounding for 1-μm optical coherence tomography in vivo[J]. Optics Letters, 39, 6727-6730(2014).

    [14] XIONG Q Z, WANG N S, LIU X Y et al. Single input state polarization-sensitive optical coherence tomography with high resolution and polarization distortion correction[J]. Optics Express, 27, 6910-6924(2019).

    [15] CHEN C L, SHI W S, QIU Z Y et al. B-scan-sectioned dynamic micro-optical coherence tomography for bulk-motion suppression[J]. Chinese Optics Letter, 20, 1-6(2022).

    [16] TAN B Y, HOSSEINAEE Z, HAN L et al. 250 kHz, 1.5 µm resolution SD-OCT for in-vivo cellular imaging of the human cornea[J]. Biomedical Optics Express, 9, 6569-6583(2018).

    [17] DREXLER W, MORGNER U, KARTNER F X et al. In vivo ultrahigh-resolution optical coherence tomography[J]. Optics Letters, 24, 1221-1223(1999).

    [18] LIN A, WANG R K. In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography[J]. Optics Express, 16, 11438-11452(2008).

    [19] SIMOHAMED L M, AUGUSTE J L, RIOUBLANC J et al. Analysis of chromatic dispersion variation in optical fiber under large stretching[J]. Optical Fiber Technology, 5, 403-411(1999).

    [20] NIBLACK W K, SCHENK J O, LIU B et al. Dispersion in a grating-based optical delay line for optical coherence tomography[J]. Applied Optics, 42, 4115-4118(2003).

    [21] MARKS D L, OLDENBURG A L, REYNOLDS J J et al. Autofocus algorithm for dispersion correction in optical coherence tomography[J]. Applied Optics, 42, 3038-3046(2003).

    [22] WOJTKOWSKI M, SRINIVASAN V J, KO T H et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation[J]. Optics Express, 12, 2404-2422(2004).

    [23] BANASZEK K, RADUNSKY A S, WALMSLEY I A. Blind dispersion compensation for optical coherence tomography[J]. Optics Communications, 269, 152-155(2007).

    [24] LEE S W, JEONG H W, KIM B M. High-speed spectral domain polarization-sensitive optical coherence tomography using a single camera and an optical switch at 1.3μm[J]. Journal of Biomedical Optics, 15, 1-3(2009).

    [25] HE Y W, LI Z F, ZHANG Y et al. Single camera spectral domain polarization-sensitive optical coherence tomography based on orthogonal channels by time divided detection[J]. Optics Communications, 403, 162-165(2017).

    [26] HE Youwu, LI Zhifang, ZHANG Ying et al. Single camera spectral domain polarization-sensitive optical coherence tomography using an optical switch[J]. Journal of Optoelectronics Laser, 28, 1067-1071(2017).

    [27] BAUMANN B, GOTZINGER E, PIRCHER M et al. Single camera based spectral domain polarization sensitive optical coherence tomography[J]. Optics Express, 15, 1054-1063(2007).

    [28] CENSE B, MUJAT M, CHEN T C et al. Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera[J]. Optics Express, 15, 2421-2431(2007).

    [29] SONG C, AHN M, GWEON D. Polarization-sensitive spectral-domain optical coherence tomography using a multi-line single camera spectrometer[J]. Optics Express, 18, 23805-23817(2010).

    [30] LIU H, GAO W Y, WU X P et al. All single-mode fiber-based polarization-sensitive spectral domain optical coherence tomography system[J]. Journal of Physics Communications, 3, 015014(2019).

    [31] WU T, CAO K, WANG X et al. Single input state, single mode fiber based spectral domain polarization sensitive optical coherence tomography using a single linear-in-wavenumber spectral camera[J]. Optics and Lasers in Engineering, 127, 105948(2020).

    [32] CENSE B, NASSIF N A, CHEN T et al. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography[J]. Optics Express, 12, 2435-2447(2004).

    [33] YANG D, HU M, ZHANG M et al. High-resolution polarization-sensitive optical coherence tomography for zebrafish muscle imaging[J]. Biomedical Optics Express, 11, 5618-5632(2020).

    [34] FAN C, YAO G. Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography[J]. Optics Letters, 37, 1415-1417(2012).

    [35] BOER J, MILNER T E, GEMERT M et al. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography[J]. Optics Letters, 22, 934-936(1997).

    Tools

    Get Citation

    Copy Citation Text

    Zhiyuan QIU, Wanrong GAO, Chaoliang CHEN, Ying CHANG. Micron Polarization-sensitive Spectral-domain Optical Coherence Tomography Based on Single Camera[J]. Acta Photonica Sinica, 2022, 51(12): 1217002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 25, 2022

    Accepted: Jun. 1, 2022

    Published Online: Feb. 6, 2023

    The Author Email: Wanrong GAO (wgao@njust.edu.cn)

    DOI:10.3788/gzxb20225112.1217002

    Topics