Photonic Sensors, Volume. 14, Issue 4, 240414(2024)

High-Q Fabry-Pérot Cavity Based on Micro-Lens Array for Refractive Index Sensing

Qi WANG, Xuyang ZHAO, Man LUO, Yuxiang LI, Junjie LIU, and Xiang WU*
Author Affiliations
  • Key Laboratory of Micro and Nano Photonic Structures, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
  • show less
    References(43)

    [1] [1] K. V. Vahala, “Optical microcavities,” Nature, 2003, 424(6950): 839–846.

    [2] [2] Y. Y. Zhi, X. C. Yu, Q. H. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Advanced Materials, 2017, 29(12): 1604920.

    [3] [3] A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, et al., “Micro-combs: a novel generation of optical sources,” Physics Reports, 2018, 729: 1–81.

    [4] [4] A. Kuhn, and D. Ljunggren, “Cavity-based single- photon sources,” Contemporary Physics, 2010, 51(4): 289–313.

    [5] [5] A. Muller, E. B. Flagg, J. R. Lawall, and G. S. Sollmon, “Ultrahigh-finesse, low-mode-volume Fabry-Perot microcavity,” Optical Letters, 2010, 35(13):2293–2295.

    [6] [6] X. Y. Zhao, Z. H. Guo, Y. Zhou, J. H. Guo, Z. R. Liu, M. Luo, et al., “Highly sensitive, modification- free, and dynamic real-time stereo-optical immuno-sensor,” Biosensors and Bioelectronics, 2023, 237: 115477.

    [7] [7] Y. B. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. D. Fan, “Optofluidic Fabry-Pérot cavity biosensor with integrated flow-through micro-/nano-channels,” Applied Physics Letters, 2011, 98(4): 041104.

    [8] [8] X. Y. Zhao, Y. X. Li, Q. Wang, M. Luo, Y. Zhou, Z. H. Guo, et al. “Ultrasensitive, dynamic, and online monitoring photonic sensors for protein conformation,” Sensors and Actuators B: Chemical, 2023, 401: 134969.

    [9] [9] J. C. Yu, Y. J. Cui, H. Xu, Y. Yang, Z. Y. Wang, B. L. Chen, et al., “Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing,” Nature Communications, 2013, 4: 2719.

    [10] [10] G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nature Photonics, 2013, 7(8): 644–650.

    [11] [11] A. Consoli, N. Caselli, and C. López, “Electrically driven random lasing from a modified Fabry-Pérot laser diode,” Nature Photonics, 2022, 16(3): 219–225.

    [12] [12] T. Y. He, M. Q. Chen, Y. Zhao, and H. M. Wei, “Optical fiber Fabry-Perot silica-microprobe for a gas pressure sensor,” Optics & Laser Technology, 2022, 152: 108106.

    [13] [13] C. S Monteiro, M. S. Ferreira, S. O. Silva, J. Kobelke, K. Schuster, J. Bierlich, et al., “Fiber Fabry-Perot interferometer for curvature sensing,” Photonic Sensors, 2016, 6(4): 339–344.

    [14] [14] L. A. Lugiato and F. Prati, “Traveling wave formalism for the dynamics of optical systems in nonlinear Fabry-Perot cavities,” Physica Scripta, 2018, 93(12): 124001.

    [15] [15] F. Azadpour, and A. Bahari, “All-optical bistability based on cavity resonances in nonlinear photonic crystal slab-reflector-based Fabry-Perot cavity,” Optics Communications, 2019, 437: 297–302.

    [16] [16] D. Q. Wang, H. Kelkar, D. Martin-Cano, D. Rattenbacher, A. Shkarin, T. Utikal, et al., “Turning a molecule into a coherent two-level quantum system,” Nature Physics, 2019, 15(5): 483–489.

    [17] [17] D. Najer, I. Sollner, P. Sekatski, V. Dolique, M. C. L?bl, D. Riedel, et al., “A gated quantum dot strongly coupled to an optical microcavity,” Nature, 2019, 575(7784): 622–627.

    [18] [18] M. Liu, X. Chao, and Z. Ye, “Transmitting intensity distribution after a Gaussian beam incidenting nonnormally on a wedged Fabry-Perot cavity,” Optik, 2008, 119(14): 661–665.

    [19] [19] D. M. Marques, J. A. Guggenheim, and P. R. T. Munro, “Analysing the impact of non-parallelism in Fabry-Perot etalons through optical modelling,” Optics Express, 2021, 29(14): 21603–21614.

    [20] [20] X. Q. Wu, Q. S. Chen, Y. P. Wang, X. T. Tan, and X. D. Fan, “Stable high-Q bouncing ball modes inside a Fabry-Pérot cavity,” ACS Photonics, 2019, 6(10): 2470–2478.

    [21] [21] J. Y. Lee, J. W. Hahn, and H. W. Lee, “Spatiospectral transmission of a plane-mirror Fabry-Perot interferometer with nonuniform finite-size diffraction beam illuminations,” Optical Society of America, 2002, 19(5): 973–984.

    [22] [22] S. R. Barone and M. C. Newstein, “Fabry-Perot resonances at small Fresnel numbers,” Applied Optics, 1964, 3(10): 1194.

    [23] [23] J. A. Arnaud, A. M. Saleh, and J. T. Ruscio, “Walk-off effects in Fabry-Perot diplexers,” . IEEE Transactions on Microwave Theory and Techniques, 1974, 22(5): 486–493.

    [24] [24] F. Li, Y. Li, Y. Cai, P. Li, H. Tang, and Y. Zhang, “Tunable open-access microcavities for solid-state quantum photonics and polaritonics,” Advanced Quantum Technologies, 2019, 2(10): 1900060.

    [25] [25] W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab on a Chip, 2015, 15(19): 3862–3869.

    [26] [26] P. Xu, X. He, J. Wang, and M. Zhan, “Trapping a single atom in a blue detuned optical bottle beam trap,” Optics Letters, 2010, 35(13): 2164–2166.

    [27] [27] K. Zhou, J. M. Cui, Y. F. Huang, Z. Wang, Z. H. Qian, Q. M. Wu, et al., “An ultraviolet fiber Fabry-Pérot cavity for florescence collection oftrapped ions,” Chinese Physics Letters, 2017, 34(1): 013701.

    [28] [28] Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature, 2007, 450(7167): 272–276.

    [29] [29] P. Qing, J. Gong, N. Yao, W. Shen, A. Rahimi-Iman, W. Fang, and L. Tong, “A simple approach to fiber-based tunable microcavity with high coupling efficiency.” Applied Physics Letters, 2019, 114(2): 021106.

    [30] [30] P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Optics Letters, 2010, 35(21): 3556–3558.

    [31] [31] X. F. Li, S. Lin, J. X. Liang, H. Oigawa, and T. Ueda, “High-sensitivity fiber-optic Fabry-Perot interferometer temperature sensor,” Japanese Journal of Applied Physics, 2012, 51(6S): 06FL10.

    [32] [32] R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, et al., “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Applied Physics Letters, 2014, 105(7): 073113.

    [33] [33] M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nature Photonics, 2011, 5(7): 406–410.

    [34] [34] X. Wu, Y. Wang, Q. Chen, Y. Chen, X. Li, L. Tong, et al., “High-Q, low-mode-volume microsphere- integrated Fabry-Perot cavity for optofluidic lasing applications,” Photonics Research, 2018, 7(1): 50–60.

    [35] [35] X. Chen, X. Zhao, Z. Guo, L. Fu, Q. Lu, S. Xie, et al., “Optofluidic microbubble Fabry-Pérot cavity,” Optics Express, 2020, 28(10): 15161–15172.

    [36] [36] Q. Zhang, M. Schambach, S. Schlisske, Q. Jin, A. Mertens, C. Rainer, et al., “Fabrication of microlens arrays with high quality and high fill factor by inkjet printing,” Advanced Optical Materials, 2022, 10(14): 2200677.

    [37] [37] L. Wang, W. Jiang, H. Liu, Z. Yang, Y. Shi, L. Yin, et al., “Adjusting light distribution for generating microlens arrays with a controllable profile and fill factor,” Journal of Micromechanics and Microengineering, 2014, 24(12): 125012.

    [38] [38] T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nature Photonics, 2016, 10(8): 554–560.

    [39] [39] H. Jung and K. H. Jeong, “Monolithic polymer microlens arrays with high numerical aperture and high packing density,” ACS Applied Materials & Interfaces, 2015. 7(4): 2160–2165.

    [40] [40] N. Jürgensen, B. Fritz, A. Mertens, J. N. Tisserant, M. Kolle, G. Gomard, et al., “A single-step hot embossing process for integration of microlens arrays in biodegradable substrates for improved light extraction of light-emitting devices,” Advanced Materials Technologies, 2021, 6(2): 1900933.

    [41] [41] E. P. Chan and A. J. Crosby, “Fabricating microlens arrays by surface wrinkling,” Advanced Materials, 2006, 18(24): 3238–3242.

    [42] [42] Y. Aishan, Y. Yalikun, S. Amaya, Y. Shen, and Y. Tanaka, “Thin glass micro-dome structure based microlens fabricated by accurate thermal expansion of microcavities,” Applied Physics Letters, 2019, 115(26).

    [43] [43] Y. Ding, Y. Lin, L. Zhao, C. Xue, M. Zhang, Y. Hong, et al., “High-throughput and controllable fabrication of soft screen protectors with microlens arrays for light enhancement of OLED displays,” Advanced Materials Technologies, 2020, 5(10): 2000382.

    Tools

    Get Citation

    Copy Citation Text

    Qi WANG, Xuyang ZHAO, Man LUO, Yuxiang LI, Junjie LIU, Xiang WU. High-Q Fabry-Pérot Cavity Based on Micro-Lens Array for Refractive Index Sensing[J]. Photonic Sensors, 2024, 14(4): 240414

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Aug. 30, 2023

    Accepted: Jan. 4, 2024

    Published Online: Oct. 15, 2024

    The Author Email: WU Xiang (wuxiang@fudan.edu.cn)

    DOI:10.1007/s13320-024-0716-2

    Topics