APPLIED LASER, Volume. 44, Issue 1, 97(2024)

Research Progress of the Dense Optical Fiber Strain Measurement Methods

Fan Juncheng1,2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(44)

    [3] [3] PENA F, RICHARDS W L, PARKER A R, et al. Implementation of fiber optic sensing system on sandwich composite cylinder buckling test[C]//2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Kissimmee, Florida. Reston, Virginia: AIAA, 2018: 1695.

    [4] [4] DAVIS C, KNOWLES M, RAJIC N, et al. Evaluation of a distributed fibre optic strain sensing system for full-scale fatigue testing[J]. Procedia Structural Integrity, 2016, 2: 3784-3791.

    [9] [9] AJOVALASIT A, ZUCCARELLO B. Local reinforcement effect of a strain gauge installation on low modulus materials[J]. The Journal of Strain Analysis for Engineering Design, 2005, 40(7): 643-653.

    [12] [12] HOTATE K, HASEGAWA T. Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique: Proposal, experiment and simulation (special issue on optical fiber sensors)[J]. IEICE Transactions on Electronics, 2000, 83: 405-412.

    [14] [14] HOTATE K, TANAKA M. Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique[J]. IEEE Photonics Technology Letters, 2002, 14(2): 179-181.

    [15] [15] MIZUNO Y, HE Z Y, HOTATE K. Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation-domain reflectometry using tellurite glass fiber[C]//20th International Conference on Optical Fibre Sensors. SPIE, 2009, 7503: 66-69.

    [16] [16] JEONG J H, LEE K, SONG K Y, et al. Differential measurement scheme for BrillouinOptical Correlation Domain Analysis[J]. Optics Express, 2012, 20(24): 27094.

    [17] [17] WANG B, FAN X Y, FU Y X, et al. Enhancement of strain/temperature measurement range and spatial resolution in Brillouin optical correlation domain analysis based on convexity extraction algorithm[J]. IEEE Access, 2019, 7: 32128-32136.

    [18] [18] ZADOK A, ANTMAN Y, PRIMEROV N, et al. Random-access distributed fiber sensing[J]. Laser & Photonics Reviews, 2012, 6(5): 1-5.

    [19] [19] ANTMAN Y, PRIMEROV N, SANCHO J, et al. Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps[J]. Optics Express, 2012, 20(7): 7807.

    [21] [21] ZHANG J Z, ZHANG M T, ZHANG M J, et al. Chaotic Brillouin optical correlation-domain analysis[J]. Optics Letters, 2018, 43(8): 1722-1725.

    [23] [23] CHILDERS B A, FROGGATT M E, ALLISON S G, et al. Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure[C]//SPIE′s 8th Annual International Symposium on Smart Structures and Materials. Proc SPIE 4332, Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies, Newport Beach, CA, USA: SPIE, 2001, 4332: 133-142.

    [24] [24] YUKSEL K, MOEYAERT V, MEGRET P, et al. Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR[J]. IEEE Sensors Journal, 2012, 12(5): 988-995.

    [25] [25] GUO H Y, LIU F, YUAN Y Q, et al. Ultra-weak FBG and its refractive index distribution in the drawing optical fiber[J]. Optics Express, 2015, 23(4): 4829.

    [28] [28] GUI X, LI Z Y, FU X L, et al. Large-scale multiplexing of a FBG array with randomly varied characteristic parameters for distributed sensing[J]. Optics Letters, 2018, 43(21): 5259-5262.

    [29] [29] WESTBROOK P S, KREMP T, FEDER K S, et al. Continuous multicore optical fiber grating arrays for distributed sensing applications[J]. Journal of Lightwave Technology, 2017, 35(6): 1248-1252.

    [30] [30] REDDING B, MURRAY M J, DONKO A, et al. Low-noise distributed acoustic sensing using enhanced backscattering fiber with ultra-low-loss point reflectors[J]. Optics Express, 2020, 28(10): 14638-14647.

    [31] [31] FROGGATT M, MOORE J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[J]. Applied Optics, 1998, 37(10): 1735-1740.

    [33] [33] ZHANG Z P, FAN X Y, HE Z Y. Long-range distributed static strain sensing with[J]. Journal of Lightwave Technology, 2019, 37(18): 4590-4596.

    [36] [36] DING Z Y, WANG C H, LIU K, et al. Distributed optical fiber sensors based on optical frequency domain reflectometry: A review[J]. Sensors, 2018, 18(4): 1072.

    [40] [40] FHRER T, WALTHER T. Extension of the mode-hop-free tuning range of an external cavity diode laser based on a model of the mode-hop dynamics[J]. Optics Letters, 2008, 33(4): 372-374.

    [41] [41] ZHANG X M, LIU A Q, LU C, et al. Continuous wavelength tuning in micromachined Littrow external-cavity lasers[J]. IEEE Journal of Quantum Electronics, 2005, 41(2): 187-197.

    [42] [42] TRUTNA W R, STOKES L F. Continuously tuned external cavity semiconductor laser[J]. Journal of Lightwave Technology, 1993, 11(8): 1279-1286.

    [43] [43] LIU A Q, ZHANG X M. A review of MEMS external-cavity tunable lasers[J]. Journal of Micromechanics and Microengineering, 2007, 17(1): R1-R13.

    [44] [44] JERMAN J H, GRADE J D, BERGER J D, et al. Tunable laser with microactuator: US20010036206[P]. 2001-11-01.

    [45] [45] HEANUE J F, JERMAN J H, WILDE J P. Widely tunable laser: US7443891[P]. 2008-10-28.

    [46] [46] ANTHON D W, BERGER J D, TSELIKOV A A, et al. Apparatus and method for phase control of tunable external cavity lasers: US6912235[P]. 2005-06-28.

    [47] [47] LANG X K, JIA P, CHEN Y Y, et al. Advances in narrow linewidth diode lasers[J]. Science China Information Sciences, 2019, 62(6): 61401.

    [48] [48] WANG Y, WU H, CHEN C, et al. An ultra-high-SMSR external-cavity diode laser with a wide tunable range around 1550 nm[J]. Applied Sciences, 2019, 9(20): 4390.

    [49] [49] LORANGER S, GAGN M, LAMBIN-IEZZI V, et al. Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre[J]. Scientific Reports, 2015, 5(1): 1-7.

    [50] [50] WESTBROOK P S, FEDER K S, ORTIZ R M, et al. Kilometer length, low loss enhanced back scattering fiber for distributed sensing[C]//2017 25th Optical Fiber Sensors Conference (OFS). Jeju, Korea (South). IEEE, 2017: 1-5.

    [51] [51] PARENT F, KANTI MANDAL K, LORANGER S, et al. 3D shape tracking of minimally invasive medical instruments using optical frequency domain reflectometry[C]//Medical Imaging 2016: Image-Guided Procedures, Robotic Interventions, and Modeling", "SPIE Proceedings. San Diego, California, USA. SPIE, 2016: 745-750.

    [52] [52] SYPABEKOVA M, KORGANBAYEV S, BLANC W, et al. Fiber optic refractive index sensors through spectral detection of Rayleigh backscattering in a chemically etched MgO-based nanoparticle-doped fiber[J]. Optics Letters, 2018, 43(24): 5945-5948.

    [53] [53] JIN J, ZHANG H S, LIU J X, et al. Distributed temperature sensing based on Rayleigh scattering in irradiated optical fiber[J]. IEEE Sensors Journal, 2016, 16(24): 8928-8935.

    [54] [54] MOLARDI C, KORGANBAYEV S, BLANC W, et al. Characterization of a nanoparticles-doped optical fiber by the use of optical backscatter reflectometry[C]//SPIE/COS Photonics Asia. Proc SPIE 10821, Advanced Sensor Systems and Applications VIII, Beijing, China: SPIE. 2018, 10821: 380-385.

    [55] [55] YAN A D, HUANG S, LI S, et al. Distributed optical fiber sensors with ultrafast laser enhanced Rayleigh backscattering profiles for real-time monitoring of solid oxide fuel cell operations[J]. Scientific Reports, 2017, 7(1): 9360.

    [56] [56] XIE W L, ZHOU Q, BRETENAKER F, et al. Fourier transform-limited optical frequency-modulated continuous-wave interferometry over several tens of laser coherence lengths[J]. Optics Letters, 2016, 41(13): 2962-2965.

    [58] [58] CHEN Z, HEFFERMAN G, WEI T. Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation[J]. Optics Letters, 2017, 42(5): 1007-1010.

    [59] [59] ZHANG X S, POULS J, WU M C. Laser frequency sweep linearization by iterative learning pre-distortion for FMCW LiDAR[J]. Optics Express, 2019, 27(7): 9965-9974.

    [60] [60] SOLLER B, GIFFORD D, WOLFE M, et al. High resolution optical frequency domain reflectometry for characterization of components and assemblies[J]. Optics Express, 2005, 13(2): 666-674.

    [61] [61] FENG B W, LIU K, LIU T G, et al. Improving OFDR spatial resolution by reducing external clock sampling error[J]. Optics Communications, 2016, 363: 74-79.

    [62] [62] SONG J, LI W H, LU P, et al. Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry[J]. IEEE Photonics Journal, 2014, 6(3): 6801408.

    [63] [63] DING Z Y, LIU T G, MENG Z, et al. Note: Improving spatial resolution of optical frequency-domain reflectometry against frequency tuning nonlinearity using non-uniform fast Fourier transform[J]. The Review of Scientific Instruments, 2012, 83(6): 066110.

    [64] [64] DING Z Y, YAO X S, LIU T G, et al. Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter[J]. Optics Express, 2013, 21(3): 3826-3834.

    Tools

    Get Citation

    Copy Citation Text

    Fan Juncheng. Research Progress of the Dense Optical Fiber Strain Measurement Methods[J]. APPLIED LASER, 2024, 44(1): 97

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 24, 2022

    Accepted: --

    Published Online: Jun. 4, 2024

    The Author Email: Juncheng Fan (crsc_fjc@163.com)

    DOI:10.14128/j.cnki.al.20244401.097

    Topics