Journal of Infrared and Millimeter Waves, Volume. 44, Issue 1, 111(2025)

Synchronous object detection and matching network based on infrared binocular vision

Chang-Wen ZENG1,2,3, Zhi-Yu YANG1,2,3, Zuo-Xiao DAI1, and Ming-Jian GU1,3、*
Author Affiliations
  • 1Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • 3Shanghai Integrated Innovation Center for Space Optoelectronic Perception,Shanghai 200083,China
  • show less
    References(42)

    [1] Zou Z, Chen K, Shi Z et al. Object detection in 20 years: A survey[J]. Proceedings of the IEEE, 111, 257-76(2023).

    [2] Badue C, Guidolini R, Carneiro R V et al. Self-driving cars: A survey[J]. Expert systems with applications, 165, 113816(2021).

    [3] Wu X, Ma D, Qu X et al. Depth dynamic center difference convolutions for monocular 3d object detection[J]. Neurocomputing, 520, 73-81(2023).

    [4] Loganathan A, Ahmad N S. A systematic review on recent advances in autonomous mobile robot navigation[J]. Engineering Science and Technology, an International Journal, 40, 101343(2023).

    [5] Wang W, Wu X, Yuan X et al. An experiment-based review of low-light image enhancement methods[J]. Ieee Access, 8, 87884-917(2020).

    [6] Blake R, Wilson H. Binocular vision[J]. Vision research, 51, 754-70(2011).

    [7] Verma N K, Goyal A, Vardhan A H et al. Object matching using speeded up robust features; proceedings of the Intelligent and Evolutionary Systems: The 19th Asia Pacific Symposium, IES[C](2015).

    [8] Pavani S-K, Delgado D, Frangi A F. Haar-like features with optimally weighted rectangles for rapid object detection[J]. Pattern Recognition, 43, 160-72(2010).

    [9] Li Y, Zheng W, Liu X et al. Research and improvement of feature detection algorithm based on fast[J]. Rendiconti Lincei Scienze Fisiche e Naturali, 32, 775-89(2021).

    [10] Chen P-Y, Huang C-C, Lien C-Y et al. An efficient hardware implementation of hog feature extraction for human detection[J]. IEEE Transactions on Intelligent Transportation Systems, 15, 656-62(2013).

    [11] Yebes J J, Bergasa L M, Arroyo R et al. Supervised learning and evaluation of kitti's cars detector with dpm; proceedings of the 2014 IEEE Intelligent Vehicles Symposium Proceedings, F, 2014[C].

    [12] Wang H, Hu D. Comparison of svm and ls-svm for regression; proceedings of the 2005 International conference on neural networks and brain, F, 2005[C].

    [13] Hastie T, Rosset S, Zhu J et al. Multi-class adaboost[J]. Statistics and its Interface, 2, 349-60(2009).

    [14] Ng P C, Henikoff S. Sift: Predicting amino acid changes that affect protein function[J]. Nucleic acids research, 31, 3812-4(2003).

    [15] Bay H, Ess A, Tuytelaars T et al. Speeded-up robust features (surf)[J]. Computer vision and image understanding, 110, 346-59(2008).

    [16] Rublee E, Rabaud V, Konolige K et al. Orb: An efficient alternative to sift or surf; proceedings of the 2011 International conference on computer vision, F, 2011[C].

    [17] Han K, Xiao A, Wu E et al. Transformer in transformer[J]. Advances in neural information processing systems, 34, 15908-19(2021).

    [18] Bharati P, Pramanik A. Deep learning techniques—r-cnn to mask r-cnn: A survey[J]. Computational Intelligence in Pattern Recognition: Proceedings of CIPR, 2020, 657-68(2019).

    [19] Ge Z, Liu S, Wang F et al. Yolox: Exceeding yolo series in 2021[J]. arXiv preprint(2021).

    [20] Liu W, Anguelov D, Erhan D et al. Ssd: Single shot multibox detector; proceedings of the Computer Vision–ECCV 2016: 14th European Conference[C](2016).

    [21] Tian Z, Shen C, Chen H et al. Fcos: A simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 1922-33(2020).

    [22] Krišto M, Ivasic-Kos M, Pobar M. Thermal object detection in difficult weather conditions using yolo[J]. IEEE access, 8, 125459-76(2020).

    [23] Ren S, He K, Girshick R et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in neural information processing systems, 28(2015).

    [24] Cai Z, Vasconcelos N. Cascade r-cnn: Delving into high quality object detection; proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, F, 2018[C].

    [25] Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint(2018).

    [26] Yao S, Zhu Q, Zhang T et al. Infrared image small-target detection based on improved fcos and spatio-temporal features[J]. Electronics, 11, 933(2022).

    [27] Lin F, Bao K, Li Y et al. Learning contrast-enhanced shape-biased representations for infrared small target detection[J]. IEEE Transactions on Image Processing(2024).

    [28] Lin F, Ge S, Bao K et al. Learning shape-biased representations for infrared small target detection[J]. IEEE Transactions on Multimedia(2023).

    [29] Sarlin P-E, DeTone D, Malisiewicz T et al. Superglue: Learning feature matching with graph neural networks; proceedings of the Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, F, 2020[C].

    [30] Sun J, Shen Z, Wang Y et al. Loftr: Detector-free local feature matching with transformers; proceedings of the Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, F, 2021[C].

    [31] Li J, Wang P, Xiong P et al. Practical stereo matching via cascaded recurrent network with adaptive correlation; proceedings of the Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, F, 2022[C].

    [32] Shorten C, Khoshgoftaar T M. A survey on image data augmentation for deep learning[J]. Journal of big data, 6, 1-48(2019).

    [33] Patro S, Sahu K K. Normalization: A preprocessing stage[J]. arXiv preprint(2015).

    [34] Koonce B, Koonce B. Resnet 50[J]. Convolutional neural networks with swift for tensorflow: image recognition and dataset categorization, 63-72(2021).

    [35] Sandler M, Howard A, Zhu M et al. Mobilenetv2: Inverted residuals and linear bottlenecks; proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, F, 2018[C].

    [36] Ma N, Zhang X, Zheng H-T et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design; proceedings of the Proceedings of the European conference on computer vision (ECCV), F, 2018[C].

    [37] Tan M, Le Q. Efficientnetv2: Smaller models and faster training; proceedings of the International conference on machine learning, F, 2021[C].

    [38] Lin T-Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection; proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, F, 2017[C].

    [39] Lin T-Y, Goyal P, Girshick R et al. Focal loss for dense object detection; proceedings of the Proceedings of the IEEE international conference on computer vision, F, 2017[C].

    [40] Zheng Z, Wang P, Liu W et al. Distance-iou loss: Faster and better learning for bounding box regression; proceedings of the Proceedings of the AAAI conference on artificial intelligence, F, 2020[C].

    [41] Su J, Liu Z, Zhang J et al. Dv-net: Accurate liver vessel segmentation via dense connection model with d-bce loss function[J]. Knowledge-Based Systems, 232, 107471(2021).

    [42] Chicco D. Siamese neural networks: An overview[J]. Artificial neural networks, 73-94(2021).

    Tools

    Get Citation

    Copy Citation Text

    Chang-Wen ZENG, Zhi-Yu YANG, Zuo-Xiao DAI, Ming-Jian GU. Synchronous object detection and matching network based on infrared binocular vision[J]. Journal of Infrared and Millimeter Waves, 2025, 44(1): 111

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Interdisciplinary Research on Infrared Science

    Received: Apr. 17, 2024

    Accepted: --

    Published Online: Mar. 5, 2025

    The Author Email: Ming-Jian GU (gumingj@sina.com)

    DOI:10.11972/j.issn.1001-9014.2025.01.015

    Topics