Chinese Journal of Lasers, Volume. 50, Issue 23, 2313001(2023)

Optical Modulation and Cause Analysis of Photocurrent in Nanoscale Tunneling Junction Devices

Yi Shen, Biaofeng Zeng, Zhenrong Zheng*, and Longhua Tang**
Author Affiliations
  • College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • show less
    References(41)

    [1] Wang M N, Wang T, Ojambati O S et al. Plasmonic phenomena in molecular junctions: principles and applications[J]. Nature Reviews Chemistry, 6, 681-704(2022).

    [2] Fried J P, Wu Y F, Tilley R D et al. Optical nanopore sensors for quantitative analysis[J]. Nano Letters, 22, 869-880(2022).

    [3] Li Z S, Lu T W, Huang P R et al. Efficient nano-tweezers via a silver plasmonic bowtie notch with curved grooves[J]. Photonics Research, 9, 281-288(2021).

    [4] Kuzmina A, Parzefall M, Back P et al. Resonant light emission from graphene/hexagonal boron nitride/graphene tunnel junctions[J]. Nano Letters, 21, 8332-8339(2021).

    [5] Li C, Chen K, Guan M X et al. Extreme nonlinear strong-field photoemission from carbon nanotubes[J]. Nature Communications, 10, 4891(2019).

    [6] Yang A K, Wang D Q, Wang W J et al. Coherent light sources at the nanoscale[J]. Annual Review of Physical Chemistry, 68, 83-99(2017).

    [7] Yu X T, Wang X, Li Z et al. Spin Hall effect of light based on a surface plasmonic platform[J]. Nanophotonics, 10, 3031-3048(2021).

    [8] Yang K, Yao X, Liu B W et al. Metallic plasmonic array structures: principles, fabrications, properties, and applications[J]. Advanced Materials, 33, 2170392(2021).

    [9] Barreda A I, Zapata-Herrera M, Palstra I M et al. Hybrid photonic-plasmonic cavities based on the nanoparticle-on-a-mirror configuration[J]. Photonics Research, 9, 2398-2419(2021).

    [10] Dasgupta A, Mennemanteuil M M, Buret M et al. Optical wireless link between a nanoscale antenna and a transducing rectenna[J]. Nature Communications, 9, 1992(2018).

    [11] Ward D R, Hüser F, Pauly F et al. Optical rectification and field enhancement in a plasmonic nanogap[J]. Nature Nanotechnology, 5, 732-736(2010).

    [12] Tang Y K, Harutyunyan H. Optical properties of plasmonic tunneling junctions[J]. The Journal of Chemical Physics, 158, 060901(2023).

    [13] Mennemanteuil M M, Buret M, Colas-des-Francs G et al. Optical rectification and thermal currents in optical tunneling gap antennas[J]. Nanophotonics, 11, 4197-4208(2022).

    [14] Zolotavin P, Evans C, Natelson D. Photothermoelectric effects and large photovoltages in plasmonic Au nanowires with nanogaps[J]. The Journal of Physical Chemistry Letters, 8, 1739-1744(2017).

    [15] Zhou S H, Chen K, Cole M T et al. Ultrafast electron tunneling devices: from electric-field driven to optical-field driven[J]. Advanced Materials, 33, e2101449(2021).

    [16] Stolz A, Berthelot J, Mennemanteuil M M et al. Nonlinear photon-assisted tunneling transport in optical gap antennas[J]. Nano Letters, 14, 2330-2338(2014).

    [17] Lu Z X, Zheng J T, Shi J et al. Application of micro/nanofabrication techniques to on-chip molecular electronics[J]. Small Methods, 5, 2001034(2021).

    [18] Zeng B F, Zou Y L, Wang G et al. Quantitative studies of single-molecule chemistry using conductance measurement[J]. Nano Today, 47, 101660(2022).

    [19] Song H, Kim Y, Jang Y H et al. Observation of molecular orbital gating[J]. Nature, 462, 1039-1043(2009).

    [20] Suga H, Suzuki H, Otsu K et al. Feedback electromigration assisted by alternative voltage operation for the fabrication of facet-edge nanogap electrodes[J]. ACS Applied Nano Materials, 3, 4077-4083(2020).

    [21] Cao Y, Dong S H, Liu S et al. Building high-throughput molecular junctions using indented graphene point contacts[J]. Angewandte Chemie (International Ed. in English), 51, 12228-12232(2012).

    [22] Tang L H, Nadappuram B P, Cadinu P et al. Combined quantum tunnelling and dielectrophoretic trapping for molecular analysis at ultra-low analyte concentrations[J]. Nature Communications, 12, 913(2021).

    [23] Yang Y, Liu J Y, Zheng J T et al. Promising electroplating solution for facile fabrication of Cu quantum point contacts[J]. Nano Research, 10, 3314-3323(2017).

    [24] Amer N M, Skumanich A, Ripple D. Photothermal modulation of the gap distance in scanning tunneling microscopy[J]. Applied Physics Letters, 49, 137-139(1986).

    [25] Cocker T L, Jelic V, Hillenbrand R et al. Nanoscale terahertz scanning probe microscopy[J]. Nature Photonics, 15, 558-569(2021).

    [26] Yoshioka K, Katayama I, Arashida Y et al. Tailoring single-cycle near field in a tunnel junction with carrier-envelope phase-controlled terahertz electric fields[J]. Nano Letters, 18, 5198-5204(2018).

    [27] Cocker T L, Jelic V, Gupta M et al. An ultrafast terahertz scanning tunnelling microscope[J]. Nature Photonics, 7, 620-625(2013).

    [28] Tu X W, Lee J H, Ho W. Atomic-scale rectification at microwave frequency[J]. The Journal of Chemical Physics, 124, 021105(2006).

    [29] Zhang W Q, Liu H S, Lu J S et al. Atomic switches of metallic point contacts by plasmonic heating[J]. Light: Science & Applications, 8, 34(2019).

    [30] Zhang S R, Guo C Y, Ni L F et al. In-situ control of on-chip angstrom gaps, atomic switches, and molecular junctions by light irradiation[J]. Nano Today, 39, 101226(2021).

    [31] Mennemanteuil M M, Colas-des-Francs G, Buret M et al. Laser-induced thermoelectric effects in electrically biased nanoscale constrictions[J]. Nanophotonics, 7, 1917-1927(2018).

    [32] Tang L H, Yi L, Jiang T et al. Measuring conductance switching in single proteins using quantum tunneling[J]. Science Advances, 8, eabm8149(2022).

    [33] Jiang T, Yi L, Liu X et al. Fabrication of electron tunnelling probes for measuring single protein conductance[J]. Nature Protocols, 18, 2579-2599(2023).

    [34] Grafström S. Photoassisted scanning tunneling microscopy[J]. Journal of Applied Physics, 91, 1717-1753(2002).

    [35] Simmons J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film[J]. Journal of Applied Physics, 34, 1793-1803(1963).

    [36] Zeng B F, Deng R, Zou Y L et al. Optical trapping of a single molecule of length sub-1 nm in solution[J]. CCS Chemistry, 5, 830-840(2023).

    [37] Zhan C, Wang G, Yi J et al. Single-molecule plasmonic optical trapping[J]. Matter, 3, 1350-1360(2020).

    [38] Wang X, Liang H Y. Plasmonic nanourchin enhanced hot carrier generation and injection[J]. Chinese Journal of Lasers, 50, 0113016(2023).

    [39] Dubois V, Raja S N, Gehring P et al. Massively parallel fabrication of crack-defined gold break junctions featuring sub-3 nm gaps for molecular devices[J]. Nature Communications, 9, 3433(2018).

    [40] Chen X W, Wang X W. Near-field thermal transport in a nanotip under laser irradiation[J]. Nanotechnology, 22, 075204(2011).

    [41] Zaman M A, Hesselink L. Dynamically controllable plasmonic tweezers using C-shaped nano-engravings[J]. Applied Physics Letters, 121, 181108(2022).

    Tools

    Get Citation

    Copy Citation Text

    Yi Shen, Biaofeng Zeng, Zhenrong Zheng, Longhua Tang. Optical Modulation and Cause Analysis of Photocurrent in Nanoscale Tunneling Junction Devices[J]. Chinese Journal of Lasers, 2023, 50(23): 2313001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: micro and nano optics

    Received: Mar. 15, 2023

    Accepted: Apr. 13, 2023

    Published Online: Dec. 7, 2023

    The Author Email: Zhenrong Zheng (zzr@zju.edu.cn), Longhua Tang (lhtang@zju.edu.cn)

    DOI:10.3788/CJL230623

    Topics