Transactions of Atmospheric Sciences, Volume. 48, Issue 4, 576(2025)

Analysis of the impact of stratospheric temperature anomalies on the development and maintenance of summer Arctic cyclones

BAI Yawen1, LU Chuhan2, SU Yunpeng2, KONG Yang2, TAO Wei3, and DING Liuguan2
Author Affiliations
  • 1State Key Laboratory of Climate System Prediction and Risk Management (CPRM)/Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
  • 2Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Wuxi University, Wuxi 214063, China
  • 3Anhui Meteorological Observatory, Hefei 230031, China
  • show less
    References(51)

    [1] [1] Aizawa T, Tanaka H L, Satoh M, 2014. Rapid development of Arctic cyclone in June 2008 simulated by the cloud resolving global model NICAM[J]. Meteor Atmos Phys, 126(3): 105-117. DOI: 10.1007/s00703-013-0272-6.

    [2] [2] Cavallo S M, Hakim G J, 2009. Potential vorticity diagnosis of a tropopause polar cyclone[J]. Mon Wea Rev, 137(4): 1358-1371. DOI: 10.1175/2008mwr2670.1.

    [3] [3] Cavallo S M, Hakim G J, 2010. Composite structure of tropopause polar cyclones[J]. Mon Wea Rev, 138(10): 3840-3857. DOI: 10.1175/2010mwr3371.1.

    [4] [4] Chen F, Dudhia J, 2001. Coupling an advanced land surface-hydrology model with the Penn state-NCAR MM5 modeling system. Part Ⅰ: model implementation and sensitivity[J]. Mon Wea Rev, 129(4): 569-585. DOI: 10.1175/1520-0493(2001)1292.0.co;2.

    [5] [5] Crawford A D, Serreze M C, 2016. Does the summer Arctic frontal zone influence Arctic Ocean cyclone activity?[J]. J Climate, 29(13): 4977-4993. DOI: 10.1175/jcli-d-15-0755.1.

    [6] [6] Croad H L, Methven J, Harvey B, et al., 2023. The role of boundary layer processes in summer-time Arctic cyclones[J]. Weather Clim Dyn, 4(3): 617-638. DOI: 10.5194/wcd-4-617-2023.

    [7] [7] Day J J, Hodges K I, 2018. Growing land-sea temperature contrast and the intensification of Arctic cyclones[J]. Geophys Res Lett, 45(8): 3673-3681. DOI: 10.1029/2018GL077587.

    [8] [8] De Silva L W A, Yamaguchi H, 2019. Grid size dependency of short-term sea ice forecast and its evaluation during extreme Arctic cyclone in August 2016[J]. Polar Sci, 21: 204-211. DOI: 10.1016/j.polar.2019.08.001.

    [9] [9] Deser C, Teng H Y, 2013. Recent trends in Arctic sea ice and the evolving role of atmospheric circulation forcing, 1979—2007[M]//Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications. Washington, D C: American Geophysical Union: 7-26. DOI: 10.1029/180gm03.

    [10] [10] Gray S L, Hodges K I, Vautrey J L, et al., 2021. The role of tropopause polar vortices in the intensification of summer Arctic cyclones[J]. Weather Clim Dyn, 2(4): 1303-1324. DOI: 10.5194/wcd-2-1303-2021.

    [11] [11] Henry A J, 2009. J Bjerknes and H Solberg on the life cycle of cyclones and the polar front theory of atmospheric circulation[J]. Mon Wea Rev, 50(9): 468-473. DOI: 10.1175/1520-0493(1922)50468:jbahso>2.0.co;2.

    [12] [12] Hirschberg P A, Fritsch J M, 1991. Tropopause undulations and the development of extratropical cyclones. Part I. overview and observations from a cyclone event[J]. Mon Wea Rev, 119(2): 496-517. DOI: 10.1175/1520-0493(1991)1192.0.co;2.

    [13] [13] Holton J R, 2004. An introduction to dynamic meteorology[M]. 4th ed. San Diego: Academic Press: 1-535.

    [14] [14] Hong S Y, Noh Y, Dudhia J, 2006. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon Wea Rev, 134(9): 2318-2341. DOI: 10.1175/mwr3199.1.

    [15] [15] Hoskins B J, Valdes P J, 1990. On the existence of storm-tracks[J]. J Atmos Sci, 47(15): 1854-1864. DOI: 10.1175/1520-0469(1990)0472.0.co;2.

    [16] [16] Iacono M J, Delamere J S, Mlawer E J, et al., 2008. Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models[J]. J Geophys Res: Atmos, 113(D13): D13103. DOI: 10.1029/2008JD009944.

    [17] [17] Janji Z I, 1994. The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes[J]. Mon Wea Rev, 122(5): 927-945. DOI: 10.1175/1520-0493(1994)1222.0.co;2.

    [18] [18] Jung T, Gordon N D, Bauer P, et al., 2016. Advancing polar prediction capabilities on daily to seasonal time scales[J]. Bull Amer Meteor Soc, 97(9): 1631-1647. DOI: 10.1175/bams-d-14-00246.1.

    [19] [19] Kain J S, 2004. The Kain-Fritsch convective parameterization: an update[J]. J Appl Meteor, 43(1): 170-181. DOI: 10.1175/1520-0450(2004)0432.0.co;2.

    [20] [20] Kong Y, Lu C H, Guan Z Y, et al., 2024. Comparison of intense summer Arctic cyclones between the marginal ice zone and central Arctic[J]. J Geophys Res: Atmos, 129(3): e2023JD039620. DOI: 10.1029/2023JD039620.

    [21] [21] Koyama T, Stroeve J, Cassano J, et al., 2017. Sea ice loss and Arctic cyclone activity from 1979 to 2014[J]. J Climate, 30(12): 4735-4754. DOI: 10.1175/jcli-d-16-0542.1.

    [22] [22] Kriegsmann A, Brmmer B, 2014. Cyclone impact on sea ice in the central Arctic Ocean: a statistical study[J]. Cryosphere, 8(1): 303-317. DOI: 10.5194/tc-8-303-2014.

    [23] [23] Lei R B, Gui D W, Heil P, et al., 2020. Comparisons of sea ice motion and deformation, and their responses to ice conditions and cyclonic activity in the western Arctic ocean between two summers[J]. Cold Reg Sci Technol, 170: 102925. DOI: 10.1016/j.coldregions.2019.102925.

    [25] [25] Liu F H, Krieger J R, Zhang J, 2014. Toward producing the Chukchi-Beaufort high-resolution atmospheric reanalysis (CBHAR) via the WRFDA data assimilation system[J]. Mon Wea Rev, 142(2): 788-805. DOI: 10.1175/mwr-d-13-00063.1.

    [26] [26] Liu Y H, Key J R, Francis J A, et al., 2007. Possible causes of decreasing cloud cover in the Arctic winter, 1982—2000[J]. Geophys Res Lett, 34(14): L14705. DOI: 10.1029/2007GL030042.

    [27] [27] Maslanik J A, Serreze M C, Barry R G, 1996. Recent decreases in Arctic summer ice cover and linkages to atmospheric circulation anomalies[J]. Geophys Res Lett, 23(13): 1677-1680. DOI: 10.1029/96gl01426.

    [29] [29] Morrison H, Thompson G, Tatarskii V, 2009. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one-and two-moment schemes[J]. Mon Wea Rev, 137(3): 991-1007. DOI: 10.1175/2008MWR2556.1.

    [30] [30] Murray R J, Simmonds I, 1995. Responses of climate and cyclones to reductions in Arctic winter sea ice[J]. J Geophys Res: Oceans, 100(C3): 4791-4806. DOI: 10.1029/94JC02206.

    [31] [31] Ogi M, Yamazaki K, Wallace J M, 2010. Influence of winter and summer surface wind anomalies on summer Arctic sea ice extent[J]. Geophys Res Lett, 37(7): L07701. DOI: 10.1029/2009GL042356.

    [32] [32] Qian Q, Zhong W, Yao Y, et al., 2023. Influence of the thermal structure on the intensification of the extreme Arctic cyclone in August 2016[J]. J Geophys Res: Atmos, 128(19): e2023JD038638. DOI: 10.1029/2023JD038638.

    [33] [33] Rossa A M, Wernli H, Davies H C, 2000. Growth and decay of an extra-tropical cyclone's PV-tower[J]. Meteor Atmos Phys, 73(3): 139-156. DOI: 10.1007/s007030050070.

    [34] [34] Schemm S, Wernli H, 2014. The linkage between the warm and the cold conveyor belts in an idealized extratropical cyclone[J]. J Atmos Sci, 71(4): 1443-1459. DOI: 10.1175/jas-d-13-0177.1.

    [35] [35] Serreze M C, Barrett A P, 2008. The summer cyclone maximum over the central Arctic ocean[J]. J Climate, 21(5): 1048-1065. DOI: 10.1175/2007jcli1810.1.

    [36] [36] Simmonds I, Keay K, 2009. Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979—2008[J]. Geophys Res Lett, 36(19): L19715. DOI: 10.1029/2009GL039810.

    [37] [37] Simmonds I, Rudeva I, 2012. The great Arctic cyclone of August 2012[J]. Geophys Res Lett, 39(23): L23709. DOI: 10.1029/2012GL054259.

    [38] [38] Sorteberg A, Walsh J E, 2008. Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic[J]. Tellus A, 60(3): 570-586. DOI: 10.1111/j.1600-0870.2008.00314.x.

    [39] [39] Stephenson S R, Smith L C, Brigham L W, et al., 2013. Projected 21st-century changes to Arctic marine access[J]. Clim Change, 118(3): 885-899. DOI: 10.1007/s10584-012-0685-0.

    [40] [40] Tanaka H L, Yamagami A, Takahashi S, 2012. The structure and behavior of the Arctic cyclone in summer analyzed by the JRA-25/JCDAS data[J]. Polar Sci, 6(1): 55-69. DOI: 10.1016/j.polar.2012.03.001.

    [41] [41] Tao W, Zhang J, Fu Y F, et al., 2017a. Driving roles of tropospheric and stratospheric thermal anomalies in intensification and persistence of the Arctic superstorm in 2012[J]. Geophys Res Lett, 44(19): 10017-10025. DOI: 10.1002/2017GL074778.

    [42] [42] Tao W, Zhang J, Zhang X D, 2017b. The role of stratosphere vortex downward intrusion in a long-lasting late-summer Arctic storm[J]. Quart J Roy Meteor Soc, 143(705): 1953-1966. DOI: 10.1002/qj.3055.

    [44] [44] Theocharis D, Pettit S, Rodrigues V S, et al., 2018. Arctic shipping: a systematic literature review of comparative studies[J]. J Transp Geogr, 69: 112-128. DOI: 10.1016/j.jtrangeo.2018.04.010.

    [45] [45] Thorndike A S, Colony R, 1982. Sea ice motion in response to geostrophic winds[J]. J Geophys Res: Oceans, 87(C8): 5845-5852. DOI: 10.1029/JC087iC08p05845.

    [46] [46] Vavrus S J, Holland M M, Jahn A, et al., 2012. Twenty-first-century Arctic climate change in CCSM4[J]. J Climate, 25(8): 2696-2710. DOI: 10.1175/jcli-d-11-00220.1.

    [47] [47] Vessey A F, Hodges K I, Shaffrey L C, et al., 2022. The composite development and structure of intense synoptic-scale Arctic cyclones[J]. Weather Clim Dyn, 3(3): 1097-1112. DOI: 10.5194/wcd-3-1097-2022.

    [48] [48] Vihma T, Screen J, Tjernstrm M, et al., 2016. The atmospheric role in the Arctic water cycle: a review on processes, past and future changes, and their impacts[J]. J Geophys Res: Biogeosci, 121(3): 586-620. DOI: 10.1002/2015JG003132.

    [49] [49] Wang C C, Rogers J C, 2001. A composite study of explosive cyclogenesis in different sectors of the North Atlantic. Part I: cyclone structure and evolution[J]. Mon Wea Rev, 129(6): 1481-1499. DOI: 10.1175/1520-0493(2001)1292.0.co;2.

    [51] [51] Yamagami A, Matsueda M, Tanaka H L, 2017. Extreme Arctic cyclone in August 2016[J]. Atmos Sci Lett, 18(7): 307-314. DOI: 10.1002/asl.757.

    [52] [52] Yamagami A, Matsueda M, Tanaka H L, 2018. Predictability of the 2012 great Arctic cyclone on medium-range timescales[J]. Polar Sci, 15: 13-23. DOI: 10.1016/j.polar.2018.01.002.

    [53] [53] Zhang J L, Lindsay R, Schweiger A, et al., 2013. The impact of an intense summer cyclone on 2012 Arctic sea ice retreat[J]. Geophys Res Lett, 40(4): 720-726. DOI: 10.1002/grl.50190.

    [54] [54] Zhang X D, Walsh J E, Zhang J, et al., 2004. Climatology and interannual variability of Arctic cyclone activity: 1948—2002[J]. J Climate, 17(12): 2300-2317. DOI: 10.1175/1520-0442(2004)0172.0.co;2.

    [55] [55] Zhang X D, Tang H, Zhang J, et al., 2023. Arctic cyclones have become more intense and longer-lived over the past seven decades[J]. Commun Earth Environ, 4: 348. DOI: 10.1038/s43247-023-01003-0.

    Tools

    Get Citation

    Copy Citation Text

    BAI Yawen, LU Chuhan, SU Yunpeng, KONG Yang, TAO Wei, DING Liuguan. Analysis of the impact of stratospheric temperature anomalies on the development and maintenance of summer Arctic cyclones[J]. Transactions of Atmospheric Sciences, 2025, 48(4): 576

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 3, 2024

    Accepted: Aug. 21, 2025

    Published Online: Aug. 21, 2025

    The Author Email:

    DOI:10.13878/j.cnki.dqkxxb.20240903003

    Topics