Chinese Optics Letters, Volume. 22, Issue 11, 111401(2024)
Latest advances in VCSEL technology for next-generation data center network [Invited]
[6] L. M. Giovane, J. Wang, M. V. R. Murty et al. Development of next generation data communication VCSELs. Optical Fiber Communications Conference and Exhibition, 1(2020).
[11] R. Pitwon, L. O’Faolain. Trends in enhanced integrated photonics for hyperscale data center and 5G environments. IEEE CPMT Symposium Japan(2019).
[15] J. A. Tatum, G. D. Landry, D. Gazula et al. VCSEL-based optical transceivers for future data center applications. Optical Fiber Communication Conference M3F-6(2018).
[16] J. Cheng, C. Xie, Y. Chen et al. Comparison of coherent and IMDD transceivers for intra datacenter optical interconnects. Optical Fiber Communications Conference and Exhibition(2019).
[17] C. Xie, C. Wang, Q. Chen et al. Characteristics of field operation data for optical transceivers in hyperscale data centers. Optical Fiber Communication Conference, Th2A-1(2022).
[20] J. Zhang, J. Yu, L. Zhao et al. Demonstration of 260-Gbps single-lane EML-based PS-PAM-8 IM/DD for datacenter interconnects. Optical Fiber Communication Conference, W4I-4(2019).
[23] X. Zhou, C. F. Lam, R. Urata et al. State-of-the-Art 800G/1.6 T datacom interconnects and outlook for 3.2 T. Optical Fiber Communication Conference, W3D-1(2023).
[26] E. Berikaa, M. S. Alam, S. Bernal et al. Net 1.6 Tbps O-band coherent transmission over 10 km Using a TFLN IQM and DFB lasers for carrier and LO. Optical Fiber Communication Conference, Th4B-1(2023).
[31] M. Hoser, W. Kaiser, D. Quandt et al. Highly reliable 106 Gbps PAM-4 850 nm multi-mode VCSEL for 800G ethernet applications. Optical Fiber Communications Conference, Tu2D.5(2022).
[33] D. Wu, X. Yu, H. Wu et al. Single-mode 850nm VCSELs demonstrate 96 Gbps PAM4 OM4 fiber link for extended reach to 1km. Optical Fiber Communication Conference, W2A.7(2022).
[34] K. Iga. VCSEL How was it born and grown since one-century after Edison?. International Semiconductor Laser Conference, SP-01(2022).
[38] L. A. Coldren, S. W. Corzine, M. L. Mashanovitch. Diode Lasers and Photonic Integrated Circuits(2012).
[39] R. Michalzik. VCSELs(2013).
[47] Y. Chang, L. A. Coldren. Optimization of VCSEL structure for high-speed operation. IEEE 21st International Semiconductor Laser Conference, 159(2008).
[58] H. Tong, Z. Wei, C. Tong et al. High-speed 850 nm vertical-cavity surface-emitting lasers with multilayer oxide aperture. 2022 IEEE 14th International Conference on Advanced Infocom Technology, 216(2022).
[59] M. Azuchi, N. Jikutani, M. Arai et al. Multi oxide layer vertical-cavity surface-emitting lasers with improved modulation bandwidth. The 5th Pacific Rim Conference on Lasers and Electro-Optics, 03TH8671(2003).
[65] C. Kottke, C. Caspar, V. Jungnickel et al. High speed 160 Gb/s DMT VCSEL transmission using pre-equalization. 2017 Optical Fiber Communications Conference and Exhibition, 1(2017).
[72] P. Goyal, S. Gupta, G. Kaur. Advances and improvements in VCSEL designing. International Conference on Electrical, Electronics, and Optimization Techniques, 4240(2016).
[91] H. R. Ibrahim, A. M. Hassan, X. Gu et al. 1060nm single-mode metal-aperture VCSEL array with transverse resonance and low power consumption below 50 fj/bit. IEEE European Conference on Optical Communication (ECOC), 1(2021).
[107] T. Anan, N. Suzuki, K. Yashiki et al. High-speed 1.1-um-range InGaAs VCSELs. Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference IEEE, 1(2008).
[111] S. Hu, X. Gu, H. R. Ibrahim et al. 5-km single-mode fiber data transmission with 1060nm single-mode intra-cavity surface relief transverse coupled cavity VCSELs. 28th International Semiconductor Laser Conference, 1(2022).
[116] J. Lavrencik, E. Simpanen, S. Varughese et al. Error-free 100Gbps PAM-4 transmission over 100 m OM5 MMF using 1060nm VCSELs. Optical Fiber Communication Conference, M1F.3(2019).
[121] J. J. Maki. Evolution of pluggable optics and what is beyond. Optical Fiber Communication Conference, Th3A.2(2019).
[123] H. Xu, M. Fields, R. Clark. Board mount client optics—prospects and challenges. Optical Fiber Communications Conference and Exhibition, 1(2016).
[129] E. Timurdogan, Z. Su, R. Shiue et al. 400G silicon photonics integrated circuit transceiver chipsets for CPO, OBO, and pluggable modules. Optical Fiber Communication Conference, T3H.2(2020).
[133] D. M. Kuchta, J. E. Proesel, F. E. Doany et al. Multi-wavelength optical transceivers integrated on node (MOTION). Optical Fiber Communications Conference and Exhibition, 1(2019).
[135] H. Chen, C. Li, N. Fontaine et al. 10-mode-multiplexed transmitter employing 2-D VCSEL matrix. European Conference on Optical Communication, 1(2021).
[137] L. Dong, X. Gu, F. Koyama. 16-ch 1060-nm single-mode bottom-emitting metal-aperture VCSEL array for co-packaged optics. Optical Fiber Communications Conference and Exhibition, 1(2023).
[138] T. Yagisawa, M. Miyoshi, J. Miike et al. Novel packaging structure using VCSEL array and multi-core fiber for co-packaged optics. IEEE CPMT Symposium Japan, 9(2022).
Get Citation
Copy Citation Text
Shanting Hu, Xingchen Zhang, Chengyuan Li, Hongxing Yin, Xinying Li, Xiangjun Xin, "Latest advances in VCSEL technology for next-generation data center network [Invited]," Chin. Opt. Lett. 22, 111401 (2024)
Category: Lasers, Optical Amplifiers, and Laser Optics
Received: Feb. 3, 2024
Accepted: May. 24, 2024
Published Online: Oct. 22, 2024
The Author Email: Shanting Hu (hushanting@bit.edu.cn)