Frontiers of Optoelectronics, Volume. 18, Issue 1, 3(2025)
Performance optimization of planar photonic crystal bound states in the continuum cavities: mitigating finite‑size effects
[1] [1] Altug, H., Englund, D., Vukovi, J.: Ultrafast photonic crystal nanocavity laser. Nat. Phys. 2(7), 484–488 (2006)
[2] [2] Lonar, M., Yoshie, T., Scherer, A., Gogna, P., Qiu, Y.: Low-threshold photonic crystal laser. Appl. Phys. Lett. 81(15), 2680–2682 (2002)
[3] [3] Park, H.G., Kim, S.H., Kwon, S.H., Ju, Y.G., Yang, J.K., Baek, J.H., Kim, S.B., Lee, Y.H.: Electrically driven single-cell photonic crystal laser. Science 305(5689), 1444–1447 (2004)
[4] [4] Ishizaki, K., De Zoysa, M., Noda, S.: Progress in photonic-crystal surface-emitting lasers. In: Photonics, p. 96. MDPI, Basel (2019)
[5] [5] Kalapala, A., Song, A.Y., Pan, M., Gautam, C., Overman, L., Reilly, K., Rotter, T.J., Balakrishnan, G., Gibson, R., Bedford, R., Coleman, J., Fan, S., Zhou, W.: Scaling challenges in high power photonic crystal surface-emitting lasers. IEEE J. Quantum Electron. 58(4), 1–9 (2022)
[6] [6] Han, S., Cui, J., Chua, Y., Zeng, Y., Hu, L., Dai, M., Wang, F., Sun, F., Zhu, S., Li, L., Davies, A., Linfield, E., Tan, C., Kivshar Y., Wang, Q.: Electrically-pumped compact topological bulk lasers driven by band-inverted bound states in the continuum. Light Sci. Appl. 12(1), 145 (2023)
[7] [7] Ma, J., Zhou, T., Tang, M., Li, H., Xi, X., Martin, M., Baron, T., Liu, H., Zhang, Z., Chen, S., Sun, X.: Room-temperature continuous-wave topological dirac-vortex microcavity lasers on silicon. Light Sci. Appl. 12(1), 255 (2023)
[8] [8] Yoshida, M., De Zoysa, M., Ishizaki, K., Tanaka, Y., Kawasaki, M., Hatsuda, R., Song, B., Gelleta, J., Noda, S.: Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams. Nat. Mater. 18(2), 121–128 (2019)
[9] [9] Kodigala, A., Lepetit, T., Gu, Q., Bahari, B., Fainman, Y., Kant, B.: Lasing action from photonic bound states in continuum. Nature 541(7636), 196–199 (2017)
[10] [10] Hsu, C.W., Zhen, B., Stone, A.D., Joannopoulos, J.D., Soljai, M.: Bound states in the continuum. Nat. Rev. Mater. 1(9), 1–13(2016)
[11] [11] Hwang, M.S., Lee, H.C., Kim, K.H., Jeong, K.Y., Kwon, S.H., Koshelev, K., Kivshar, Y., Park, H.G.: Ultralow-threshold laser using super-bound states in the continuum. Nat. Commun. 12(1), 4135 (2021)
[12] [12] Zhao, H., Cao, X., Dong, Q., Song, C., Wang, L., Gao, L.: Largearea silicon photonic crystal supporting bound states in the continuum and optical sensing formed by nanoimprint lithography. Nanoscale Adv. 5(5), 1291–1298 (2023)
[13] [13] Taghizadeh, A., Chung, I.S.: Quasi bound states in the continuum with few unit cells of photonic crystal slab. Appl. Phys. Lett. (2017).
[14] [14] Kornovan, D.F., Savelev, R.S., Kivshar, Y., Petrov, M.I.: High-Q localized states in finite arrays of subwavelength resonators. ACS Photonics 8(12), 3627–3632 (2021)
[15] [15] Zhong, H., Yu, Y., Zheng, Z., Ding, Z., Zhao, X., Yang, J., Wei, Y., Chen, Y., Yu, S.: Ultra-low threshold continuous-wave quantum dot mini-bic lasers. Light Sci. Appl. 12(1), 100 (2023)
[16] [16] Han, C., Kang, M., Jeon, H.: Lasing at multidimensional topological states in a two-dimensional photonic crystal structure. ACS Photonics 7(8), 2027–2036 (2020)
[17] [17] Cui, J., Chua, Y., Han, S., Wang, C., Jin, Y., Li, J., Zeng, Y., Wang, Q., Ye, M., Chen, W., Zhu, S., Sun, F., Li, L., Davies, A., Linfield, E., Tan, C., Wang, Q.: Single-mode electrically pumped terahertz laser in an ultracompact cavity via merging bound states in the continuum. Laser Photonics Rev. 17(11), 2300350 (2023)
[18] [18] Ren, Y., Li, P., Liu, Z., Chen, Z., Chen, Y.-L., Peng, C., Liu, J.: Low-threshold nanolasers based on miniaturized bound states in the continuum. Sci. Adv. 8(51), 8817 (2022).
[19] [19] Pan, Z., Li, W., Lv, J., Nie, Y., Zhong L., Liu, S., Ma, X.: Design and fabrication of 940 nm vcsel single-emitter device. Acta Physica Sinica. (2023).
Get Citation
Copy Citation Text
Hao Ran, Ye Bilin, Xu Jinhong, Zou Yonggang. Performance optimization of planar photonic crystal bound states in the continuum cavities: mitigating finite‑size effects[J]. Frontiers of Optoelectronics, 2025, 18(1): 3
Category: RESEARCH ARTICLE
Received: Nov. 24, 2024
Accepted: Apr. 30, 2025
Published Online: Apr. 30, 2025
The Author Email: