Acta Optica Sinica, Volume. 43, Issue 16, 1623008(2023)
Theory and Application of Bound States in the Continuum in Photonics
[1] von Neumann J, Wigner E P. Über merkwürdige diskrete eigenwerte[M]. Wightman A S. The collected works of eugene paul wigner, 2875, 291-293(1993).
[2] Koshelev K, Bogdanov A, Kivshar Y. Engineering with bound states in the continuum[J]. Optics and Photonics News, 31, 38-45(2020).
[3] Callan M, Linton C M, Evans D V. Trapped modes in two-dimensional waveguides[J]. Journal of Fluid Mechanics, 229, 51-64(1991).
[4] Cobelli P J, Pagneux V, Maurel A et al. Experimental study on water-wave trapped modes[J]. Journal of Fluid Mechanics, 666, 445-476(2011).
[5] Chen Z G, Xu C Q, Al Jahdali R et al. Corner states in a second-order acoustic topological insulator as bound states in the continuum[J]. Physical Review B, 100, 075120(2019).
[6] Marinica D C, Borisov A G, Shabanov S V. Bound states in the continuum in photonics[J]. Physical Review Letters, 100, 183902(2008).
[7] Johnson C W, Launey K D, Auerbach N et al. White paper: from bound states to the continuum[J]. Journal of Physics G, 47, 123001(2020).
[8] Friedrich H, Wintgen D. Interfering resonances and bound states in the continuum[J]. Physical Review A, 32, 3231-3242(1985).
[9] Fan S H, Villeneuve P R, Joannopoulos J D et al. Theoretical analysis of channel drop tunneling processes[J]. Physical Review B, 59, 15882-15892(1999).
[10] Fan S H, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs[J]. Physical Review B, 65, 235112(2002).
[11] Fan S H, Suh W, Joannopoulos J D. Temporal coupled-mode theory for the Fano resonance in optical resonators[J]. Journal of the Optical Society of America A, 20, 569-572(2003).
[12] Plotnik Y, Peleg O, Dreisow F et al. Experimental observation of optical bound states in the continuum[J]. Physical Review Letters, 107, 183901(2011).
[13] Gansch R, Kalchmair S, Genevet P et al. Measurement of bound states in the continuum by a detector embedded in a photonic crystal[J]. Light: Science & Applications, 5, e16147(2016).
[14] Bulgakov E N, Sadreev A F. Light trapping above the light cone in a one-dimensional array of dielectric spheres[J]. Physical Review A, 92, 023816(2015).
[15] Bulgakov E N, Sadreev A F. Bloch bound states in the radiation continuum in a periodic array of dielectric rods[J]. Physical Review A, 90, 053801(2014).
[16] Lee J, Zhen B, Chua S L et al. Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs[J]. Physical Review Letters, 109, 067401(2012).
[17] Yao J Q, Li J T, Zhang Y T et al. Bound states in continuous domain in periodic optical system[J]. Chinese Optics, 16, 1-23(2023).
[18] Chen R, Li T Y, Bi Q H et al. Quasi-bound states in the continuum-based switchable light-field manipulator[J]. Optical Materials Express, 12, 1232-1241(2022).
[19] Muhammad N, Chen Y, Qiu C W et al. Optical bound states in continuum in MoS2-based metasurface for directional light emission[J]. Nano Letters, 21, 967-972(2021).
[20] Xu L, Zangeneh Kamali K, Huang L J et al. Dynamic nonlinear image tuning through magnetic dipole quasi-BIC ultrathin resonators[J]. Advanced Science, 6, 1802119(2019).
[21] Koshelev K, Tang Y T, Li K et al. Nonlinear metasurfaces governed by bound states in the continuum[J]. ACS Photonics, 6, 1639-1644(2019).
[22] Abujetas D R, Barreda Á, Moreno F et al. Brewster quasi bound states in the continuum in all-dielectric metasurfaces from single magnetic-dipole resonance meta-atoms[J]. Scientific Reports, 9, 16048(2019).
[23] Romano S, Zito G, Torino S et al. Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum[J]. Photonics Research, 6, 726-733(2018).
[24] Liang Y, Koshelev K, Zhang F C et al. Bound states in the continuum in anisotropic plasmonic metasurfaces[J]. Nano Letters, 20, 6351-6356(2020).
[25] Zhao X G, Chen C X, Kaj K et al. Terahertz investigation of bound states in the continuum of metallic metasurfaces[J]. Optica, 7, 1548-1554(2020).
[26] Joseph S, Sarkar S, Khan S et al. Exploring the optical bound state in the continuum in a dielectric grating coupled plasmonic hybrid system[J]. Advanced Optical Materials, 9, 2001895(2021).
[27] Niu J Q, Zhai Y Q, Han Q Q et al. Resonance-trapped bound states in the continuum in metallic THz metasurfaces[J]. Optics Letters, 46, 162-165(2021).
[28] Kodigala A, Lepetit T, Gu Q et al. Lasing action from photonic bound states in continuum[J]. Nature, 541, 196-199(2017).
[29] Huang C, Zhang C, Xiao S M et al. Ultrafast control of vortex microlasers[J]. Science, 367, 1018-1021(2020).
[30] Mylnikov V, Ha S T, Pan Z Y et al. Lasing action in single subwavelength particles supporting supercavity modes[J]. ACS Nano, 14, 7338-7346(2020).
[31] Hwang M S, Lee H C, Kim K H et al. Ultralow-threshold laser using super-bound states in the continuum[J]. Nature Communications, 12, 4135(2021).
[32] Ha S T, Paniagua-Domínguez R, Kuznetsov A I. Room-temperature multi-beam, multi-wavelength bound states in the continuum laser[J]. Advanced Optical Materials, 10, 2200753(2022).
[33] Meudt M, Bogiadzi C, Wrobel K et al. Hybrid photonic-plasmonic bound states in continuum for enhanced light manipulation[J]. Advanced Optical Materials, 8, 2000898(2020).
[34] Yesilkoy F, Arvelo E R, Jahani Y et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nature Photonics, 13, 390-396(2019).
[35] Leitis A, Tittl A, Liu M K et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval[J]. Science Advances, 5, eaaw2871(2019).
[36] Liu Y H, Zhou W D, Sun Y Z. Optical refractive index sensing based on high-Q bound states in the continuum in free-space coupled photonic crystal slabs[J]. Sensors, 17, 1861(2017).
[37] Gao X W, Zhen B, Soljačić M et al. Bound states in the continuum in fiber Bragg gratings[J]. ACS Photonics, 6, 2996-3002(2019).
[38] Bulgakov E, Sadreev A. Fibers based on propagating bound states in the continuum[J]. Physical Review B, 98, 085301(2018).
[39] Hsu C W, Zhen B, Stone A D et al. Bound states in the continuum[J]. Nature Reviews Materials, 1, 16048(2016).
[40] Silveirinha M G. Trapping light in open plasmonic nanostructures[J]. Physical Review A, 89, 023813(2014).
[41] Lannebère S, Silveirinha M G. Optical meta-atom for localization of light with quantized energy[J]. Nature Communications, 6, 8766(2015).
[42] Sadrieva Z F, Sinev I S, Koshelev K L et al. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness[J]. ACS Photonics, 4, 723-727(2017).
[43] Doeleman H M, Monticone F, den Hollander W et al. Experimental observation of a polarization vortex at an optical bound state in the continuum[J]. Nature Photonics, 12, 397-401(2018).
[44] Dreisow F, Szameit A, Heinrich M et al. Adiabatic transfer of light via a continuum in optical waveguides[J]. Optics Letters, 34, 2405-2407(2009).
[45] Tittl A, Leitis A, Liu M K et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 360, 1105-1109(2018).
[46] Moiseyev N. Suppression of Feshbach resonance widths in two-dimensional waveguides and quantum dots: a lower bound for the number of bound states in the continuum[J]. Physical Review Letters, 102, 167404(2009).
[47] Foley J M, Young S M, Phillips J D. Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating[J]. Physical Review B, 89, 165111(2014).
[48] Koshelev K, Lepeshov S, Liu M K et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 121, 193903(2018).
[49] Tian J Y, Li Q A, Belov P A et al. High-Q all-dielectric metasurface: super and suppressed optical absorption[J]. ACS Photonics, 7, 1436-1443(2020).
[50] Evlyukhin A B, Bozhevolnyi S I, Pors A et al. Detuned electrical dipoles for plasmonic sensing[J]. Nano Letters, 10, 4571-4577(2010).
[51] Li J T, Li J E, Zheng C L et al. Spectral amplitude modulation and dynamic near-field displaying of all-silicon terahertz metasurfaces supporting bound states in the continuum[J]. Applied Physics Letters, 119, 241105(2021).
[52] Wang Z C, Sun J C, Li J Y et al. Customizing 2.5D out-of-plane architectures for robust plasmonic bound-states-in-the-continuum metasurfaces[J]. Advanced Science, 10, 2206236(2023).
[53] Fedotov V A, Rose M, Prosvirnin S L et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Physical Review Letters, 99, 147401(2007).
[54] Zhang J F, MacDonald K F, Zheludev N I. Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial[J]. Optics Express, 21, 26721-26728(2013).
[55] Cambiasso J, König M, Cortés E et al. Surface-enhanced spectroscopies of a molecular monolayer in an all-dielectric nanoantenna[J]. ACS Photonics, 5, 1546-1557(2018).
[56] Manjappa M, Solanki A, Kumar A et al. Solution-processed lead iodide for ultrafast all-optical switching of terahertz photonic devices[J]. Advanced Materials, 1901455(2019).
[57] Suh W, Yanik M F, Solgaard O et al. Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs[J]. Applied Physics Letters, 82, 1999-2001(2003).
[58] Suh W, Solgaard O, Fan S H. Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs[J]. Journal of Applied Physics, 98, 033102(2005).
[59] Hsu C W, Zhen B, Chua S L et al. Bloch surface eigenstates within the radiation continuum[J]. Light: Science & Applications, 2, e84(2013).
[60] Ndangali R F, Shabanov S V. Electromagnetic bound states in the radiation continuum for periodic double arrays of subwavelength dielectric cylinders[J]. Journal of Mathematical Physics, 51, 102901(2010).
[61] Longhi S. Transfer of light waves in optical waveguides via a continuum[J]. Physical Review A, 78, 013815(2008).
[62] Longhi S. Optical analogue of coherent population trapping via a continuum in optical waveguide arrays[J]. Journal of Modern Optics, 56, 729-737(2009).
[63] Weimann S, Xu Y, Keil R et al. Compact surface fano states embedded in the continuum of waveguide arrays[J]. Physical Review Letters, 111, 240403(2013).
[64] Lepetit T, Akmansoy E, Ganne J P et al. Resonance continuum coupling in high-permittivity dielectric metamaterials[J]. Physical Review B, 82, 195307(2010).
[65] Lepetit T, Kanté B. Controlling multipolar radiation with symmetries for electromagnetic bound states in the continuum[J]. Physical Review B, 90, 241103(2014).
[66] Azzam S I, Shalaev V M, Boltasseva A et al. Formation of bound states in the continuum in hybrid plasmonic-photonic systems[J]. Physical Review Letters, 121, 253901(2018).
[67] Rybin M, Kivshar Y. Supercavity lasing[J]. Nature, 541, 164-165(2017).
[68] Rybin M V, Koshelev K L, Sadrieva Z F et al. High-Q supercavity modes in subwavelength dielectric resonators[J]. Physical Review Letters, 119, 243901(2017).
[69] Hsu C W, Zhen B, Lee J et al. Observation of trapped light within the radiation continuum[J]. Nature, 499, 188-191(2013).
[70] Yang Y, Peng C, Liang Y et al. Analytical perspective for bound states in the continuum in photonic crystal slabs[J]. Physical Review Letters, 113, 037401(2014).
[71] Yang B J, Saeed Bahramy M, Nagaosa N. Topological protection of bound states against the hybridization[J]. Nature Communications, 4, 1524(2013).
[72] Zhen B, Hsu C W, Lu L et al. Topological nature of optical bound states in the continuum[J]. Physical Review Letters, 113, 257401(2014).
[73] Zou C L, Cui J M, Sun F W et al. Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators[J]. Laser & Photonics Reviews, 9, 114-119(2015).
[74] Li J T, Yue Z, Li J et al. Ultra-narrowband terahertz circular dichroism driven by planar metasurface supporting chiral quasi bound states in continuum[J]. Optics & Laser Technology, 161, 109173(2023).
[75] Kang M, Zhang S P, Xiao M et al. Merging bound states in the continuum at off-high symmetry points[J]. Physical Review Letters, 126, 117402(2021).
[76] Han S, Cong L Q, Srivastava Y K et al. All-dielectric active terahertz photonics driven by bound states in the continuum[J]. Advanced Materials, 31, 1901921(2019).
[77] Volya A, Zelevinsky V. Non-Hermitian effective Hamiltonian and continuum shell model[J]. Physical Review C, 67, 054322(2003).
[78] Suh W, Wang Z, Fan S H. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities[J]. IEEE Journal of Quantum Electronics, 40, 1511-1518(2004).
[79] Kikkawa R, Nishida M, Kadoya Y. Polarization-based branch selection of bound states in the continuum in dielectric waveguide modes anti-crossed by a metal grating[J]. New Journal of Physics, 21, 113020(2019).
[80] Sadrieva Z, Frizyuk K, Petrov M et al. Multipolar origin of bound states in the continuum[J]. Physical Review B, 100, 115303(2019).
[81] Wu P C, Liao C Y, Savinov V et al. Optical anapole metamaterial[J]. ACS Nano, 12, 1920-1927(2018).
[82] Poshakinskiy A V, Poddubny A N. Optomechanical Kerker effect[J]. Physical Review X, 9, 011008(2019).
[83] Shamkhi H K, Baryshnikova K V, Sayanskiy A et al. Transverse scattering and generalized kerker effects in all-dielectric Mie-resonant metaoptics[J]. Physical Review Letters, 122, 193905(2019).
[84] Sadrieva Z, Frizyuk K, Petrov M et al. Multipole analysis of bound states in the continuum supported by a periodic array of spheres[C], X-354(2019).
[85] Jin J C, Yin X F, Ni L F et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering[J]. Nature, 574, 501-504(2019).
[86] Kang M, Mao L, Zhang S P et al. Merging bound states in the continuum by harnessing higher-order topological charges[J]. Light: Science & Applications, 11, 228(2022).
[87] Chen Z H, Yin X F, Jin J C et al. Observation of miniaturized bound states in the continuum with ultra-high quality factors[J]. Science Bulletin, 67, 359-366(2022).
[88] Krasikov S D, Bogdanov A A, Iorsh I V. Nonlinear bound states in the continuum of a one-dimensional photonic crystal slab[J]. Physical Review B, 97, 224309(2018).
[89] Zakharov V A, Poddubny A N. Transverse magneto-optical Kerr effect enhanced at the bound states in the continuum[J]. Physical Review A, 101, 043848(2020).
[90] Ha S T, Fu Y H, Emani N K et al. Directional lasing in resonant semiconductor nanoantenna arrays[J]. Nature Nanotechnology, 13, 1042-1047(2018).
[92] Wang B, Liu W Z, Zhao M X et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum[J]. Nature Photonics, 14, 623-628(2020).
[93] Azzam S I, Chaudhuri K, Lagutchev A et al. Single and multi-mode directional lasing from arrays of dielectric nanoresonators[J]. Laser & Photonics Reviews, 15, 2000411(2021).
[94] Bahari B, Valini F, Lepetit T et al. Integrated and steerable vortex laser using bound states in continuum[J]. Proceedings of SPIE, 10535, 105351Q(2018).
[95] Miller R C. Optical second harmonic generation in piezoelectric crystals[J]. Applied Physics Letters, 5, 17-19(1964).
[96] Singer K D, Sohn J E, Lalama S J. Second harmonic generation in poled polymer films[J]. Applied Physics Letters, 49, 248-250(1986).
[97] Ghimire S, DiChiara A D, Sistrunk E et al. Observation of high-order harmonic generation in a bulk crystal[J]. Nature Physics, 7, 138-141(2011).
[98] Wang T C, Zhang X D. Improved third-order nonlinear effect in graphene based on bound states in the continuum[J]. Photonics Research, 5, 629-639(2017).
[99] Carletti L, Koshelev K, De Angelis C et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum[J]. Physical Review Letters, 121, 033903(2018).
[100] Liu Z J, Xu Y, Lin Y et al. High-Q quasibound states in the continuum for nonlinear metasurfaces[J]. Physical Review Letters, 123, 253901(2019).
[101] Bernhardt N, Koshelev K, White S J U et al. Quasi-BIC resonant enhancement of second-harmonic generation in WS2 monolayers[J]. Nano Letters, 20, 5309-5314(2020).
[103] Koshelev K, Kruk S, Melik-Gaykazyan E et al. Subwavelength dielectric resonators for nonlinear nanophotonics[J]. Science, 367, 288-292(2020).
[104] Zhang X D, Liu Y L, Han J C et al. Chiral emission from resonant metasurfaces[J]. Science, 377, 1215-1218(2022).
[105] Overvig A, Yu N F, Alù A. Chiral quasi-bound states in the continuum[J]. Physical Review Letters, 126, 073001(2021).
[106] Shi T, Deng Z L, Geng G Z et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum[J]. Nature Communications, 13, 4111(2022).
[107] Tang Y H, Liang Y, Yao J et al. Chiral bound states in the continuum in plasmonic metasurfaces[J]. Laser & Photonics Reviews, 17, 202200597(2023).
[108] Mur-Petit J, Molina R A. Chiral bound states in the continuum[J]. Physical Review B, 90, 035434(2014).
[109] Chen Y, Deng H C, Sha X B et al. Observation of intrinsic chiral bound states in the continuum[J]. Nature, 613, 474-478(2023).
[110] Oh S S, Hess O. Chiral metamaterials: enhancement and control of optical activity and circular dichroism[J]. Nano Convergence, 2, 1-14(2015).
[111] Yahyaoui A, Rmili H. Chiral all-dielectric metasurface based on elliptic resonators with circular dichroism behavior[J]. International Journal of Antennas and Propagation, 2018, 1-7(2018).
[112] Zhang R R, Zhao Q L, Wang X A et al. Measuring circular phase-dichroism of chiral metasurface[J]. Nanophotonics, 8, 909-920(2019).
[113] Droulias S. Chiral sensing with achiral isotropic metasurfaces[J]. Physical Review B, 102, 075119(2020).
[114] Chen R, Bi Q H, Li T Y et al. Dual-wavelength chiral metasurfaces based on quasi-bound states in the continuum[J]. Journal of Optics, 25, 045001(2023).
[115] Shen Z L, Fang X D, Li S N et al. Terahertz spin-selective perfect absorption enabled by quasi-bound states in the continuum[J]. Optics Letters, 47, 505-508(2022).
[116] Gorkunov M V, Antonov A A, Kivshar Y S. Metasurfaces with maximum chirality empowered by bound states in the continuum[J]. Physical Review Letters, 125, 093903(2020).
[117] Overvig A, Alù A. Wavefront-selective fano resonant metasurfaces[J]. Advanced Photonics, 3, 026002(2021).
[118] Koshelev K, Tang Y T, Hu Z X et al. Resonant chiral effects in nonlinear dielectric metasurfaces[J]. ACS Photonics, 10, 298-306(2023).
[119] Koshelev K, Jahani Y, Tittl A et al. Enhanced circular dichroism and chiral sensing with bound states in the continuum[C](2019).
[120] Romano S, Mangini M, Penzo E et al. Ultrasensitive surface refractive index imaging based on quasi-bound states in the continuum[J]. ACS Nano, 14, 15417-15427(2020).
[121] Romano S, Zito G, Managò S et al. Surface-enhanced Raman and fluorescence spectroscopy with an all-dielectric metasurface[J]. The Journal of Physical Chemistry C, 122, 19738-19745(2018).
[122] Ndao A, Hsu L, Cai W et al. Differentiating and quantifying exosome secretion from a single cell using quasi-bound states in the continuum[J]. Nanophotonics, 9, 1081-1086(2020).
[123] Yu Z J, Xi X A, Ma J W et al. Photonic integrated circuits with bound states in the continuum[J]. Optica, 6, 1342-1348(2019).
[124] Okamoto K[M]. Fundamentals of optical waveguides(2006).
[125] Bezus E A, Bykov D A, Doskolovich L L. Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide[J]. Photonics Research, 6, 1084-1093(2018).
[126] Bezus E A, Doskolovich L L, Bykov D A et al. Spatial integration and differentiation of optical beams in a slab waveguide by a dielectric ridge supporting high-Q resonances[J]. Optics Express, 26, 25156-25165(2018).
[127] Doskolovich L L, Bezus E A, Bykov D A. Integrated flat-top reflection filters operating near bound states in the continuum[J]. Photonics Research, 7, 1314-1322(2019).
[128] Nguyen T G, Ren G H, Schoenhardt S et al. Ridge resonance in silicon photonics harnessing bound states in the continuum[J]. Laser & Photonics Reviews, 13, 1900035(2019).
[129] Bykov D A, Bezus E A, Doskolovich L L. Bound states in the continuum and strong phase resonances in integrated Gires-Tournois interferometer[J]. Nanophotonics, 9, 83-92(2020).
[130] Xu H N, Shi Y C. Silicon-waveguide-integrated high-quality metagrating supporting bound state in the continuum[J]. Laser & Photonics Reviews, 14, 1900430(2020).
[131] Yan M, Sun K, Ning T Y et al. Numerical study of low threshold nanolaser based on quasi-continuum bound state of resonant waveguide grating structure[J]. Acta Physica Sinica, 72, 044202(2023).
[132] Dong Z G, Jin L, Rezaei S D et al. Schrödinger’s red pixel by quasi-bound-states-in-the-continuum[J]. Science Advances, 8, eabm4512(2022).
[133] Ma X Z, Ma Y A, Cunha P et al. Strategical deep learning for photonic bound states in the continuum[J]. Laser & Photonics Reviews, 16, 2100658(2022).
Get Citation
Copy Citation Text
Qianhui Bi, Yujuan Peng, Run Chen, Shuming Wang. Theory and Application of Bound States in the Continuum in Photonics[J]. Acta Optica Sinica, 2023, 43(16): 1623008
Category: Optical Devices
Received: May. 4, 2023
Accepted: Jun. 14, 2023
Published Online: Aug. 1, 2023
The Author Email: Wang Shuming (wangshuming@nju.edu.cn)