Acta Laser Biology Sinica, Volume. 30, Issue 2, 97(2021)

Research Progress of Wide-field Optical Coherence Tomography in Ophthalmology

TAO Chenglong1, YANG Biwen2, FAN Ranran2, ZHONG Huiqing2, SU Chengkang1, GUO Zhouyi2, and LIU Zhiming2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(33)

    [1] [1] HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography [J]. Science, 1991, 254(5035): 1178-1181.

    [2] [2] FERCHER A F, DREXLER W, HITZENBERGER C K, et al. Optical coherence tomography-principles and applications [J]. Reports on Progress in Physics, 2003, 66(2): 239-303.

    [3] [3] KASHANI A H, CHEN C L, GAHM J K, et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications [J]. Progress in Retinal and Eye Research, 2017, 60: 66-100.

    [4] [4] LIN W, ZHANG H, ZHANG W, et al. In vivo degradation and endothelialization of an iron bioresorbable scaffold [J]. Bioactive Materials, 2021, 6(4): 1028-1039.

    [5] [5] KOENIG K, SPEICHER M, BUECKLE R, et al. Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases [J]. Journal of Biophotonics, 2009, 2(6): 389-397.

    [6] [6] KOLB J P, KLEIN T, KUFNER C L, et al. Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle [J]. Biomedical Optics Express, 2015, 6(5): 1534-1552.

    [7] [7] REZNICEK L, KLEIN T, WIESER W, et al. Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices [J]. Graefes Archive for Clinical and Experimental Ophthalmology, 2014, 252(6): 1009-1016.

    [8] [8] PODDAR R, MIGACZ J V, SCHWARTZ D M, et al. Challenges and advantages in wide-field optical coherence tomography angiography imaging of the human retinal and choroidal vasculature at 1.7-MHz A-scan rate [J]. Journal of Biomedical Optics, 2017, 22(10): 106018.

    [9] [9] ZHANG Z J, IKPATT U, LAWMAN S, et al. Sub-surface imaging of soiled cotton fabric using full-field optical coherence tomography [J]. Optics Express, 2019, 27(10): 13951-13964.

    [11] [11] FERGUSON R D, HAMMER D X, PAUNESCU L A, et al. Tracking optical coherence tomography [J]. Optics Letters, 2004, 29(18): 2139-2141.

    [12] [12] FERGUSON R D, HAMMER D X, ELSNER A E, et al. Wide-field retinal hemodynamic imaging with the tracking scanning laser ophthalmoscope [J]. Optics Express, 2004, 12(21): 5198-5208.

    [13] [13] LI Y, GREGORI G, LAM B L, et al. Automatic montage of SD-OCT data sets [J]. Optics Express, 2011, 19(27): 26239-26248.

    [14] [14] BLATTER C, WEINGAST J, ALEX A, et al. In situ structural and microangiographic assessment of human skin lesions with high-speed OCT [J]. Biomedical Optics Express, 2012, 3(10): 2636-2646.

    [15] [15] ZHANG Q Q, HUANG Y P, ZHANG T, et al. Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking [J]. Journal of Biomedical Optics, 2015, 20(6): 066008.

    [16] [16] HUANG Y, BADAR M, NITKOWSKI A, et al. Wide-field high-speed space-division multiplexing optical coherence tomography using an integrated photonic device [J]. Biomedical Optics Express, 2017, 8(8): 3856-3867.

    [17] [17] ZHANG P, LIU G, ZHANG M, et al. Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram [J]. Biomedical Optics Express, 2016, 7(7): 2823-2836.

    [18] [18] POLANS J, KELLER B, CARRASCO-ZEVALLOS O M, et al. Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions [J]. Biomedical Optics Express, 2017, 8(1): 16-37.

    [19] [19] HOFER H, SREDAR N, QUEENER H, et al. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye [J]. Optics Express, 2011, 19(15): 14160-14171.

    [20] [20] MWANZA J C, BUDENZ D L. New developments in optical coherence tomography imaging for glaucoma [J]. Current Opinion in Ophthalmology, 2018, 29(2): 121-129.

    [21] [21] DURHAM J T, HERMAN I M. Microvascular modifications in diabetic retinopathy [J]. Current Diabetes Reports, 2011, 11(4): 253-264.

    [22] [22] UNTERLAUFT J D, REHAK M, BOHM M R R, et al. Analyzing the impact of glaucoma on the macular architecture using spectral-domain optical coherence tomography [J]. PLoS One, 2018, 13(12): e0209610.

    [23] [23] ROSENFELD P J, BROWN D M, HEIER J S, et al. Ranibizumab for neovascular age-related macular degeneration [J]. New England Journal of Medicine, 2006, 355(14): 1419-1431.

    [24] [24] BEK T. Regional morphology and pathophysiology of retinal vascular disease [J]. Progress in Retinal and Eye Research, 2013, 36: 247-259.

    [25] [25] TAN B, CHUA J, LIN E. Quantitative microvascular analysis with wide-field optical coherence tomography angiography in eyes with diabetic retinopathy [J]. JAMA Network Open, 2020, 3(1): e1919469.

    [26] [26] YOU Q S, GUO Y, WANG J, et al. Detection of clinically unsuspected retinal neovascularization with wide-field optical coherence tomography angiography [J]. Retina-the Journal of Retinal and Vitreous Diseases, 2020, 40(5): 891-897.

    [27] [27] YASUKURA S, MURAKAMI T, SUZUMA K, et al. Diabetic nonperfused areas in macular and extramacular regions on wide-field optical coherence tomography angiography [J]. Investigative Ophthalmology & Visual Science, 2018, 59(15): 5893-5903.

    [28] [28] CHUNG C Y, LI K K W. Optical coherence tomography angiography wide-field montage in branch retinal vein occlusion before and after anti-vascular endothelial-derived growth factor injection [J]. International Ophthalmology, 2018, 38(3): 1305-1307.

    [29] [29] TIAN M, TAPPEINER C, ZINKERNAGEL M S, et al. Evaluation of vascular changes in intermediate uveitis and retinal vasculitis using swept-source wide-field optical coherence tomography angiography [J]. British Journal of Ophthalmology, 2019, 103(9): 1289-1295.

    [30] [30] KAKIUCHI N, TERASAKI H, SONODA S, et al. Regional differences of choroidal structure determined by wide-field optical coherence tomography [J]. Investigative Ophthalmology & Visual Science, 2019, 60(7): 2614-2622.

    [31] [31] LEE W J, KIM T J, KIM Y K, et al. Serial combined wide-field optical coherence tomography maps for detection of early glaucomatous structural progression [J]. JAMA Ophthalmology, 2018, 136(10): 1121-1127.

    [32] [32] HOOD D C, DE CUIR N, BLUMBERG D M, et al. A single wide-field OCT protocol can provide compelling information for the diagnosis of early glaucoma [J]. Translational Vision Science & Technology, 2016, 5(6): 4.

    [33] [33] MUHAMMAD H, FUCHS T J, DE CUIR N, et al. Hybrid deep learning on single wide-field optical coherence tomography scans accurately classifies glaucoma suspects [J]. Journal of Glaucoma, 2017, 26(12): 1086-1094.

    [34] [34] LIM L S, CAMP D A, ANCONA-LEZAMA D, et al. Wide-field (15×9?mm) swept-source optical coherence tomography angiography following plaque radiotherapy of choroidal melanoma: an analysis of 105 eyes [J]. Asia-Pacific Journal of Ophthalmology, 2020, 9(4): 326-334.

    Tools

    Get Citation

    Copy Citation Text

    TAO Chenglong, YANG Biwen, FAN Ranran, ZHONG Huiqing, SU Chengkang, GUO Zhouyi, LIU Zhiming. Research Progress of Wide-field Optical Coherence Tomography in Ophthalmology[J]. Acta Laser Biology Sinica, 2021, 30(2): 97

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 28, 2021

    Accepted: --

    Published Online: Sep. 1, 2021

    The Author Email: Zhiming LIU (liuzm@scnu.edu.cn)

    DOI:10.3969/j.issn.1007-7146.2021.02.001

    Topics