Spacecraft Recovery & Remote Sensing, Volume. 46, Issue 3, 84(2025)

Decentralized and Centralized Control for Multichannel Active Vibration Isolation

Xin MO1, Liu YANG2, Gang HUANG2, Huadong LIAN2, and Zhe LIN2
Author Affiliations
  • 1DFH Satellite Co. Ltd., Beijing 100094, China
  • 2Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China
  • show less
    Figures & Tables(10)
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    • Table 1. Undampted natural frequency and damping ratio of vibration isolation in the linear-degree of freedom direction

      View table
      View in Article

      Table 1. Undampted natural frequency and damping ratio of vibration isolation in the linear-degree of freedom direction

      振动方向隔振特性被动隔振集中式分布式
      x无阻尼固有频率$ 2\sqrt{k/m} $$ 2\sqrt{(k+0.5{g}_{51})/m} $$ 2\sqrt{(k+0.5{r}_{{\mathrm{H}},x})/m} $
      阻尼比$ \dfrac{c}{\sqrt{k/m}} $$ \dfrac{(2c+{g}_{57})}{\sqrt{(4k+2{g}_{51})m}} $$ \dfrac{(2c+{q}_{{\mathrm{H}},x})}{\sqrt{(4k+2{r}_{{\mathrm{H}},x})m}} $
      y无阻尼固有频率$ 2\sqrt{k/m} $$ 2\sqrt{(k+0.5{g}_{62})/m} $$ 2\sqrt{(k+0.5{r}_{{\mathrm{H}},y})/m} $
      阻尼比$ \dfrac{c}{\sqrt{k/m}} $$ \dfrac{(2c+{g}_{68})}{\sqrt{(4k+2{g}_{62})m}} $$ \dfrac{(2c+{q}_{{\mathrm{H}},y})}{\sqrt{(4k+2{r}_{{\mathrm{H}},y})m}} $
      z无阻尼固有频率$ 2\sqrt{k/m} $$ \sqrt{(4k+2{g}_{13}+2{g}_{23})/m} $$ 2\sqrt{(k+{r}_{\mathrm{V}})/m} $
      阻尼比$ \dfrac{c}{\sqrt{k/m}} $$ \dfrac{(2c+{g}_{19}+{g}_{29})}{\sqrt{(4k+2{g}_{13}+2{g}_{23})m}} $$ \dfrac{c+{q}_{\mathrm{V}}}{\sqrt{(k+{r}_{\mathrm{V}})m}} $
    • Table 2. Equivalent stiffness and damping of vibration isolation in different angular-degree of freedom directions

      View table
      View in Article

      Table 2. Equivalent stiffness and damping of vibration isolation in different angular-degree of freedom directions

      振动方向隔振特性被动隔振集中式分布式
      φ等效刚度4kL24kL2+2L×($ {g}_{14}{+g}_{24} $)4L2×(k+$ {r}_{\mathrm{V}} $)
      等效阻尼4cL24cL24L2×(c+$q_{\mathrm{V}} $)
      θ等效刚度4kW24kW2+2W×($ {g}_{35}{-g}_{15} $)4W2×(k+$ {r}_{\mathrm{V}} $)
      等效阻尼4cW24cW24W2×(c+$q_{\mathrm{V}} $)
      ψ等效刚度4k(L2+W2)4k(L2+W2)+2W×$ {g}_{66} $-2L×$ {g}_{56} $4k(L2+W2)+2L2×$ {r}_{{\mathrm{H}},x} $+2W2×$ {r}_{{\mathrm{H}},y} $
      等效阻尼4c(L2+W2)4c(L2+W2)4c(L2+W2)+2L2×$q_{{\mathrm{H}},x} $+2W2×$q_{{\mathrm{H}},y} $
    • Table 3. Design parameters of active and passive vibration isolation system

      View table
      View in Article

      Table 3. Design parameters of active and passive vibration isolation system

      设计参数mIxIyIz
      数值1507.2 kg322.8 kg·m2182.1 kg·m2502.4 kg·m2
      设计参数LWkc
      数值600 mm500 mm71 N/mm0.754 N·s/mm
      设计参数基座线振动速率功率谱密度基座角振动速率功率谱密度
      数值10 (μm·s−1)2/Hz10 (μrad·s−1)2/Hz
    • Table 4. Parameters of decentralized control mode

      View table
      View in Article

      Table 4. Parameters of decentralized control mode

      序号$ {r}_{\mathrm{V}} $$q_{\mathrm{V}} $$ {r}_{{\mathrm{H}},x} $$q_{{\mathrm{H}},x} $$ {r}_{{\mathrm{H}},y} $$q_{{\mathrm{H}},y} $
      000000
      −35.50−71.00−71.00
      −63.90−127.80−127.80
      −63.91.5−127.81.5−127.81.5
    • Table 5. Parameters of centralized control mode

      View table
      View in Article

      Table 5. Parameters of centralized control mode

      序号$ {g}_{13}+{g}_{23} $$ {g}_{19}+{g}_{29} $$ {g}_{51} $$ {g}_{57} $$ {g}_{62} $$ {g}_{68} $$ {g}_{14}{+g}_{24} $$ {g}_{35}{-g}_{15} $$ {g}_{66} $$ {g}_{56} $
      −63.90−127.80−127.800000
      −63.90−127.80−127.80−42.6−71−6561
      −63.91.5−127.81.5−127.81.5−42.6−71−6561
    Tools

    Get Citation

    Copy Citation Text

    Xin MO, Liu YANG, Gang HUANG, Huadong LIAN, Zhe LIN. Decentralized and Centralized Control for Multichannel Active Vibration Isolation[J]. Spacecraft Recovery & Remote Sensing, 2025, 46(3): 84

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 7, 2024

    Accepted: --

    Published Online: Jul. 1, 2025

    The Author Email:

    DOI:10.3969/j.issn.1009-8518.2025.03.009

    Topics