Acta Photonica Sinica, Volume. 54, Issue 1, 0130001(2025)
Study on Ozone Retrieval Algorithm for Monitoring Near Space Ultraviolet Radiation
[1] LIN Wei, LI Yiliang, WANG Gaohong et al. Overview and perspectives of astrobiology[J]. Chinese Science Bulletin, 65, 380-391(2020).
[2] LIN Wei. Life in the near space and implications for astrobiology[J]. Chinese Science Bulletin, 65, 1297-1304(2020).
[3] SMITH D J. Microbes in the upper atmosphere and unique opportunities for astrobiology research[J]. Astrobiology, 13, 981-990(2013).
[4] MA Ruiqiang, WANG Changguo, TAN Huifeng. Effect of near space environment on mechanical properties of airship envelope woven materials[J]. Equipment Environment Engineering, 17, 1-5(2020).
[5] LIU Sheng, ZHU Meiguang, JI Siwei et al. Influence study of environment in near space on flexible thin film solar cells[J]. Acta Energiae Solaris Sinica, 39, 3371-3379(2018).
[6] SONG Ping. Analysis of atmospheric environment characteristics of China′s near space based on satellite, rocket and balloon exploration data[D](2020).
[7] AN Yuan, WANG Xianhua, YE Hanhan et al. Study on the ultraviolet radiation environment and influencing factors in near space[J]. Acta Photonica Sinca, 53, 0301001(2024).
[8] VAN PEET J C A, VAN DER A R J, TUINDER O N E et al. Ozone ProfilE Retrieval Algorithm (OPERA) for nadir-looking satellite instruments in the UV-VIS[J]. Atmospheric Measurement Techniques, 7, 859-876(2014).
[9] FLITTNER D E, BHARTIA P K, HERMAN B M. O3 profiles retrieved from limb scatter measurements: theory[J]. Geophysical Research Letters, 27, 2601-2604(2000).
[10] METTIG N, WEBER M, ROZANOV A et al. Combined UV and IR ozone profile retrieval from TROPOMI and CrIS measurements[J]. Atmospheric Measurement Techniques, 15, 2955-2978(2022).
[11] SINGER S F, WENTWORTH R C. A method for the determination of the vertical ozone distribution from a satellite[J]. Journal of Geophysical Research, 62, 299-308(1957).
[12] COOPER M J, MARTIN R V, HENZE D K et al. Effects of a priori profile shape assumptions on comparisons between satellite NO2 columns and model simulations[J]. Atmospheric Chemistry and Physics, 20, 7231-7241(2020).
[13] LAUGHNER J L, ROCHE S, KIEL M et al. A new algorithm to generate a priori trace gas profiles for the GGG2020 retrieval algorithm[J]. Atmospheric Measurement Techniques, 16, 1121-1146(2023).
[14] LI X, GAO F, WANG J et al. A priori knowledge accumulation and its application to linear BRDF model inversion[J]. Journal of Geophysical Research, 106, 11925-11935(2001).
[15] ZHAO F, LIU C, CAI Z et al. Ozone profile retrievals from TROPOMI: implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China[J]. Science of The Total Environment, 764, 142886(2021).
[16] BHARTIA P K, MCPETERS R D, MATEER C L et al. Algorithm for the estimation of vertical ozone profiles from the backscattered ultraviolet technique[J]. Journal of Geophysical Research: Atmospheres, 101, 18793-18806(1996).
[17] MUNRO R, SIDDANS R, REBURN W J et al. Direct measurement of tropospheric ozone distributions from space[J]. Nature, 392, 168-171(1998).
[18] BURROWS J P, WEBER M, BUCHWITZ M et al. The global ozone monitoring experiment (GOME): Mission concept and first scientific results[J]. Journal of the Atmospheric Sciences, 56, 151-175(1999).
[19] HOOGEN R, ROZANOV V V, BURROWS J P. Ozone profiles from GOME satellite data: algorithm description and first validation[J]. Journal of Geophysical Research: Atmospheres, 104, 8263-8280(1999).
[20] LIU X, CHANCE K, SIORIS C E et al. Ozone profile and tropospheric ozone retrievals from the global ozone monitoring experiment: algorithm description and validation[J]. Journal of Geophysical Research: Atmospheres, 110, D20307(2005).
[21] MILES G M, SIDDANS R, KERRIDGE B J et al. Tropospheric ozone and ozone profiles retrieved from GOME-2 and their validation[J]. Atmospheric Measurement Techniques, 8, 385-398(2015).
[22] LIU X, BHARTIA P K, CHANCE K et al. Ozone profile retrievals from the ozone monitoring instrument[J]. Atmospheric Chemistry and Physics, 10, 2521-2537(2010).
[23] METTIG N, WEBER M, ROZANOV A et al. Ozone profile retrieval from nadir TROPOMI measurements in the UV range[J]. Atmospheric Measurement Techniques, 14, 6057-6082(2021).
[24] WANG S W, STREETS D G, ZHANG Q et al. Satellite detection and model verification of NOx emissions from power plants in Northern China[J]. Environment Research Letter, 5, 044007(2010).
[25] JOHNSON M S, LIU X, ZOOGMAN P et al. Evaluation of potential sources of a priori ozone profiles for TEMPO tropospheric ozone retrievals[J]. Atmospheric Measurement Techniques, 11, 3457-3477(2018).
[26] LUDEWING A, KLEIPOOL Q, BARTSTRA R et al. In-flight calibration results of the TROPOMI payload on board the Sentinel-5 Precursor Satellite[J]. Atmospheric Measurement Techniques, 13, 3561-3580(2020).
[27] DAVID L M, RAVISHANKARA A R, BREWER J F et al. Tropospheric ozone over the Indian subcontinent from 2000 to 2015: data set and simulation using GEOS-Chem chemical transport model[J]. Atmospheric Environment, 219, 117039(2019).
[28] ZHANG L, JACOB D J, DOWNEY N V et al. Improved estimate of the policy-relevant background ozone in the United States using the GEOS-Chem global model with 1/2°×2/3° horizontal resolution over North America[J]. Atmospheric Environment, 45, 6769-6776(2011).
[29] FUSCO A C, LOGAN J A. Analysis of 1970-1995 trends in tropospheric ozone at Northern Hemisphere midlatitudes with the GEOS‐CHEM model[J]. Journal of Geophysical Research: Atmospheres, 108, 4449(2003).
[30] HUANG G, LIU X, CHANCE K et al. Validation of 10-year SAO OMI ozone profile (PROFOZ) product using Aura MLS measurements[J]. Atmospheric Measurement Techniques, 11, 17-32(2018).
[31] MCPETERS R D, JANZ S J, HILSENRATH E et al. The retrieval of O3 profiles from limb scatter measurements: results from the shuttle ozone limb sounding experiment[J]. Geophysical Research Letters, 27, 2597-2600(2000).
[32] SULLIVAN J T, APITULEY A, METTIG N et al. Tropospheric and stratospheric ozone profiles during the 2019 TROpomi vaLIdation eXperiment (TROLIX-19)[J]. Atmospheric Chemistry and Physics, 22, 11137-11153(2022).
[33] KUTTIPPURATH J, FENG W, MÜLLER R et al. Exceptional loss in ozone in the Arctic winter/spring of 2019/2020[J]. Atmospheric Chemistry and Physics, 21, 14019-14037(2021).
[34] DESHLER T, MERCER J L, SMIT H G J et al. Atmospheric comparison of electrochemical cell ozonesondes from different manufactures, and with different cathode solution strengths: the balloon experiment on standards for ozonesondes[J]. Journal of Geophysical Research: Atmospheres, 113, 307(2008).
[35] SMIT H G J, STRAETER W, JOHNSON B J et al. Assessment of the performance of ECC-ozonsondes under quasi-flight conditions in the environmental simulation chamber: insights from the Juelich Ozone Sonde Intercomparison Experiment (JOSIE)[J]. Journal of Geophysical Research: Atmospheres, 112, 306(2007).
[36] HUANG G, LIU X, CHANCE K et al. Validation of 10-year SAO OMI Ozone Profile (PROFOZ) product using ozonesonde observations[J]. Atmospheric Measurement Techniques, 10, 2455-2475(2017).
[37] LEE H, CHOI T, KIM S et al. Validations of satellite ozone profiles in austral spring using ozonesonde measurements[J]. Environmental Research, 214, 114087(2022).
[38] LIAO Z, LING Z, GAO M et al. Tropospheric ozone variability over Hong Kong based on recent 20 years (2000-2019) ozonesonde observation[J]. Journal of Geophysical Research: Atmospheres, 126, e2020(2020).
[39] FAHRIN F, JONES D C, WU Y et al. Unsupervised classification of ozone profiles in UKESM1[J]. Atmospheric Chemistry and Physics, 23, 3609-3627(2023).
[40] CHRISTIAN K E, BRUNE W H, MAO J. Global sensitivity analysis of the GEOS-Chem chemical transport model: Ozone and hydrogen oxides during ARCTAS (2008)[J]. Atmospheric Chemistry and Physics, 17, 3769-3784(2017).
[41] WANG Zijun, CHEN Shengbo, LV Hang et al. Conversion on different dimensions of atmospheric ozone[J]. Journal of Meteorology and Environment, 26, 63-67(2010).
[42] AN Y, MA J, GAO Y et al. Tomographic retrieval algorithm of OH concentration profiles using double spatial heterodyne spectrometers[J]. Atmospheric Measurement Techniques, 13, 6521-6542(2020).
[43] RODGERS C D[M]. Inverse methods for atmospheric sounding: theory and practice, series on atmospheric oceanic and planetary: Volume 2(2000).
[44] FRANCO B, HENDRICK F, ROOZENDAEL M V et al. Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations[J]. Atmospheric Measurement Techniques, 8, 1733-1756(2015).
[45] YE Hanhan, WANG Xianhua, WU Jun et al. Error matrix construction method for atmospheric carbon dioxide Bayesian retrieval[J]. Infrared and Laser Engineering, 43, 249-253(2014).
[46] MIJLING B, TUINDER O N E, OSS R F V et al. Improving ozone profile retrieval from spaceborne UV backscatter spectrometers using convergence behavior diagnostics[J]. Atmospheric Measurement Techniques, 3, 1555-1568(2010).
[47] SOFIEVA V F, TAMMINEN E, KYROLA T et al. A novel tropopasuse-related climatology of ozone profile[J]. Atmospheric Chemistry and Physics, 14, 283-299(2014).
[48] ZHENG Xiangdong, CHENG Haixuan. Comparison of solar ultraviolet irradiance measurements at Zhongshan station, Antarctica[J]. Journal of Applied Meteorological Science, 31, 482-493(2020).
Get Citation
Copy Citation Text
Yuan AN, Xianhua WANG, Hanhan YE, Hailiang SHI, Shichao WU, Chao LI, Erchang SUN. Study on Ozone Retrieval Algorithm for Monitoring Near Space Ultraviolet Radiation[J]. Acta Photonica Sinica, 2025, 54(1): 0130001
Category:
Received: Jul. 12, 2024
Accepted: Sep. 29, 2024
Published Online: Mar. 5, 2025
The Author Email: Xianhua WANG (xhwang@aiofm.ac.cn)