NUCLEAR TECHNIQUES, Volume. 45, Issue 12, 120601(2022)

Research on multi-scale creep behaviors of UN-U 3Si 2 composite fuels

Qingfeng YANG1, Zhexiao XIE2, Ping CHEN1, Jing ZHANG2, Shixin GAO1, Guochen DING2, Yi ZHOU1, Chunyu YIN1, Shurong DING2、*, Liang HE1, and Dan SUN1
Author Affiliations
  • 1Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
  • 2Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
  • show less
    References(29)

    [1] ZHANG Xiang, LIU Guiliang, LIU Yunming et al. Study on fabrication and microstructural analysis of U3Si2 fuel pellets[J]. Nuclear Power Engineering, 40, 56-59(2019).

    [2] Wilson T L, Moore E E, Adorno Lopes D et al. Uranium nitride-silicide advanced nuclear fuel: higher efficiency and greater safety[J]. Advances in Applied Ceramics, 117, s76-s81(2018).

    [3] Ortega L H, Blamer B J, Evans J A et al. Development of an accident-tolerant fuel composite from uranium mononitride (UN) and uranium sesquisilicide (U3Si2) with increased uranium loading[J]. Journal of Nuclear Materials, 471, 116-121(2016).

    [4] Harp J M, Lessing P A, Hoggan R E. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation[J]. Journal of Nuclear Materials, 466, 728-738(2015).

    [5] Kaloni T P, Torres E. Thermal and mechanical properties of U3Si2: a combined ab-initio and molecular dynamics study[J]. Journal of Nuclear Materials, 533, 152090(2020).

    [6] White J T, Nelson A T, Dunwoody J T et al. Corrigendum to "Thermophysical properties of U3Si2 to 1773 K"[J]. Journal of Nuclear Materials, 484, 386-387(2016).

    [7] Vioujard N, Kliewer R, Delafoy C et al. Advanced fuel technologies of the future[C], 20-27(2019).

    [8] Wallenius J, Jolkkonen M, Mishchenko Y et al. Towards industrial-scale manufacture of UN fuel for water-cooled reactors[C], 1144-1146(2019).

    [9] LI Rui. Low temperature sintering technology to UO2 fuel pellets and its creep properties in high temperature[J]. Nuclear Power Engineering, 35, 97-100(2014).

    [10] Burton B, Reynolds G L, Barnes J P. The influence of grain size on the creep of uranium dioxide[J]. Journal of Materials Science, 8, 1690-1694(1973).

    [11] Zeisser P, Maraniello G, Merlini C. In-pile measurement of fission enhanced creep and swelling of uranium nitride[J]. Journal of Nuclear Materials, 65, 48-60(1977).

    [12] Hayes S L, Thomas J K, Peddicord K L. Material property correlations for uranium mononitride:II. mechanical properties[J]. Journal of Nuclear Materials, 171, 271-288(1990).

    [13] Brucklacher D, Dienst W. Creep behavior of ceramic nuclear fuels under neutron irradiation[J]. Journal of Nuclear Materials, 42, 285-296(1972).

    [14] Mercado E A C. High temperature compression creep of U3Si2[D](2018).

    [15] Freeman R A. Analysis of pellet-cladding mechanical interaction on U3Si2 fuel with a multi-layer SiC cladding using bison[D](2018).

    [16] Yingling J A, Gamble K A, Roberts E et al. Updated U3Si2 thermal creep model and sensitivity analysis of the U3Si2-SiC accident tolerant Fuel[J]. Journal of Nuclear Materials, 543, 152586(2021).

    [17] Metzger K. Analysis of pellet cladding interaction and creep of U3Si2 fuel for use in light water reactors[D](2016).

    [18] Finlay M R, Hofman G L, Snelgrove J L. Irradiation behaviour of uranium silicide compounds[J]. Journal of Nuclear Materials, 325, 118-128(2004).

    [19] Ross S B, El-Genk M S, Matthews R B. Uranium nitride fuel swelling correlation[J]. Journal of Nuclear Materials, 170, 169-177(1990).

    [20] Olander D R. Fundamental aspects of nuclear reactor fuel elements[R](1976).

    [21] Herring C. Diffusional viscosity of a polycrystalline solid[J]. Journal of Applied Physics, 21, 437-445(1950).

    [22] Weertman J. Steady-state creep of crystals[J]. Journal of Applied Physics, 28, 1185-1189(1957).

    [23] Weertman J. Steady-state creep through dislocation climb[J]. Journal of Applied Physics, 28, 362-364(1957).

    [24] Cooper M W D, Gamble K A, Capolungo L et al. Irradiation-enhanced diffusion and diffusion-limited creep in U3Si2[J]. Journal of Nuclear Materials, 555, 153129(2021).

    [25] Nakata K, Matsuda T, Kawai M. Multi-scale creep analysis of plain-woven laminates using time-dependent homogenization theory: effects of laminate configuration[J]. International Journal of Modern Physics B, 22, 6173-6178(2008).

    [26] Yu P, Duan Y H, Chen E et al. Microstructure-based homogenization method for early-age creep of cement paste[J]. Construction and Building Materials, 188, 1193-1206(2018).

    [27] Matsuda T, Fukuta Y. Multi-scale creep analysis of angle-ply CFRP laminates based on a homogenization theory[J]. Journal of Solid Mechanics and Materials Engineering, 4, 1664-1672(2010).

    [28] White J T, Travis A W, Dunwoody J T et al. Fabrication and thermophysical property characterization of UN/U3Si2 composite fuel forms[J]. Journal of Nuclear Materials, 495, 463-474(2017).

    [29] Zhang J Y, Ding S R. Mesoscale simulation research on the homogenized elasto-plastic behavior of FeCrAl alloy[J]. Materials Today Communications, 22, 100718(2020).

    Tools

    Get Citation

    Copy Citation Text

    Qingfeng YANG, Zhexiao XIE, Ping CHEN, Jing ZHANG, Shixin GAO, Guochen DING, Yi ZHOU, Chunyu YIN, Shurong DING, Liang HE, Dan SUN. Research on multi-scale creep behaviors of UN-U 3Si 2 composite fuels[J]. NUCLEAR TECHNIQUES, 2022, 45(12): 120601

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Apr. 12, 2022

    Accepted: --

    Published Online: Jan. 3, 2023

    The Author Email: DING Shurong (dingshurong@fudan.edu.cn)

    DOI:10.11889/j.0253-3219.2022.hjs.45.120601

    Topics