Acta Optica Sinica, Volume. 20, Issue 1, 94(2000)
Internal Photon Conversion Efficiency in the Strontium Atomic Resonance Filter
[1] [1] Gelbwachs J A. Atomic resonance filters. IEEE J. Quant. Electron., 1988,QE-24(7):1266~1277
[2] [2] Marling J B, Nilson J, West L C et al.. An ultrahigh Q isotropically sensitive optical filter employ atomic resonance transitions. J. Appl. Phys.,1979,50(2):610~614
[3] [3] Shay T M, Chung Y C. Ultrahigh-resolation, wide-field-of-view optical filter for the detection of frequency doubled Nd: YAG radiation. Opt. Lett., 1988,13(6):443~445
[4] [4] Oehry B P, Schupita W, Mager G. Lamp-pumped thallium atomic line filter at 535.046 nm. Opt. Lett., 1991,16(20):1620~1622
[5] [5] Chan Y C, Tabal M D, Gelbwachs J A. Experimental demonstration of internal conversion in the magnesium atomic filter. Opt. Lett., 1989,14(14):722~724
[6] [6] Gelbwachs J A. 422.7 nm atomic filter with superior solar background rejection. Opt. Lett., 1990, 15(4): 236~238
[7] [7] Gelbwachs J A. Proposed Fraunhofer-wavelength atomic filter at 534.9 nm. Opt. Lett., 1990, 15(20): 1165~1167
[8] [8] Gelbwachs J A, Klein C F, Wessel J E. Infrared detection by an atomic vapor quantum counter. IEEE. J. Quant. Electron., 1978,QE-14(2):77~79
[9] [9] Chung Y C, Shay T M. Experimental demonstration of a diode laser-excited optical filter in atomic Rb vapor. IEEE. J. Quant. Electron., 1988,24(5):709~711
[10] [10] Gelbwachs J A, Wessel J E. Atomic vapor quantum counter: Narrow-band infrared upconverter. IEEE Trans. Electron. Devices., 1980,ED-27(1):99~108
[11] [11] Gelbwachs J A, Chan Y C. Passive Fraunhofer-wavelength atomic filter at 460.7 nm. IEEE J. Quant. Electron., 1992,QE-28(11):2577~2581
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Internal Photon Conversion Efficiency in the Strontium Atomic Resonance Filter[J]. Acta Optica Sinica, 2000, 20(1): 94