Laser & Optoelectronics Progress, Volume. 61, Issue 9, 0916002(2024)
Microstructure and Properties of TiC/AlMgSc Composites by Selective Laser Melting
[1] DebRoy T, Wei H L, Zuback J S et al. Additive manufacturing of metallic components-Process, structure and properties[J]. Progress in Materials Science, 92, 112-224(2018).
[2] Yin Y Y, Zhang J H, Yang S Z et al. Effect of microstructure on the electrochemical dissolution behaviour of Hastelloy® X superalloy processed by selective laser melting and heat treatments[J]. Materials & Design, 206, 109828(2021).
[3] Tan C L, Zhou K S, Ma W Y et al. Research progress of laser additive manufacturing of maraging steels[J]. Acta Metallurgica Sinica, 56, 36-52(2020).
[4] Li R D, Shi Y S, Wang Z G et al. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting[J]. Applied Surface Science, 256, 4350-4356(2010).
[5] Deng C Y, Guo Y F, Chu Q K et al. Study on selective laser melting process of AlMgScZr based on response surface optimization methodology[J]. Materials Research and Application, 15, 210-219(2021).
[6] Maconachie T, Leary M, Zhang J J et al. Effect of build orientation on the quasi-static and dynamic response of SLM AlSi10Mg[J]. Materials Science and Engineering: A, 788, 139445(2020).
[7] Zhang H, Zhu H H, Qi T et al. Selective laser melting of high strength Al-Cu-Mg alloys: processing, microstructure and mechanical properties[J]. Materials Science and Engineering: A, 656, 47-54(2016).
[8] Qi T, Zhu H H, Zhang H et al. Selective laser melting of Al7050 powder: melting mode transition and comparison of the characteristics between the keyhole and conduction mode[J]. Materials & Design, 135, 257-266(2017).
[9] Lü X R, Liu T T, Liao W H et al. Solidification crack elimination and quality control of high-strength aluminum alloy 7075 fabricated using laser powder bed fusion[J]. Chinese Journal of Lasers, 49, 1402209(2022).
[10] Schmidtke K, Palm F, Hawkins A et al. Process and mechanical properties: applicability of a scandium modified Al-alloy for laser additive manufacturing[J]. Physics Procedia, 12, 369-374(2011).
[11] Spierings A B, Dawson K, Heeling T et al. Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting[J]. Materials & Design, 115, 52-63(2017).
[12] Tang H, Geng Y X, Luo J J et al. Mechanical properties of high Mg-content Al-Mg-Sc-Zr alloy fabricated by selective laser melting[J]. Metals and Materials International, 27, 2592-2599(2021).
[13] Kürnsteiner P, Bajaj P, Gupta A et al. Control of thermally stable core-shell nano-precipitates in additively manufactured Al-Sc-Zr alloys[J]. Additive Manufacturing, 32, 100910(2020).
[14] Shi Y J, Rometsch P, Yang K et al. Characterisation of a novel Sc and Zr modified Al-Mg alloy fabricated by selective laser melting[J]. Materials Letters, 196, 347-350(2017).
[15] Shi Y J, Yang K, Kairy S K et al. Effect of platform temperature on the porosity, microstructure and mechanical properties of an Al-Mg-Sc-Zr alloy fabricated by selective laser melting[J]. Materials Science and Engineering: A, 732, 41-52(2018).
[16] Li W, Yang Y, Liu J et al. Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2in situ metal matrix composites prepared via selective laser melting[J]. Acta Materialia, 136, 90-104(2017).
[17] Yu W H, Sing S L, Chua C K et al. Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: a state of the art review[J]. Progress in Materials Science, 104, 330-379(2019).
[18] Wang J H, Liu T, Luo L S et al. Selective laser melting of high-strength TiB2/AlMgScZr composites: microstructure, tensile deformation behavior, and mechanical properties[J]. Journal of Materials Research and Technology, 16, 786-800(2022).
[19] Feng Z, Tan H, Fang Y B et al. Selective laser melting of TiB2/AlSi10Mg composite: processability, microstructure and fracture behavior[J]. Journal of Materials Processing Technology, 299, 117386(2022).
[20] Gu D D, Hagedorn Y C, Meiners W et al. Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by Selective Laser Melting (SLM): densification, growth mechanism and wear behavior[J]. Composites Science and Technology, 71, 1612-1620(2011).
[21] Zou T C, Zhu H, Chen M Y et al. Microstructure and tensile properties of SiC reinforced aluminum matrix composite prepared by selective laser melting[J]. Chinese Journal of Lasers, 48, 1002123(2021).
[22] Olakanmi E O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si Powders: effect of processing conditions and powder properties[J]. Journal of Materials Processing Technology, 213, 1387-1405(2013).
[23] Xiao Y K, Bian Z Y, Wu Y et al. Effect of nano-TiB2 particles on the anisotropy in an AlSi10Mg alloy processed by selective laser melting[J]. Journal of Alloys and Compounds, 798, 644-655(2019).
[24] Gu D D, Meiners W, Wissenbach K et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 57, 133-164(2012).
Get Citation
Copy Citation Text
Weiyun Ding, Fugui Si, Changgeng Xia, Dezhi Sun, Yakun Xu, Yingcui Xu, Haojie Cheng, Mengzhi Wang, Wei Ji. Microstructure and Properties of TiC/AlMgSc Composites by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0916002
Category: Materials
Received: May. 15, 2023
Accepted: Jul. 12, 2023
Published Online: May. 6, 2024
The Author Email: Yakun Xu (haojie@tju.edu.cn)
CSTR:32186.14.LOP231309