Journal of Inorganic Materials, Volume. 35, Issue 12, 1349(2020)
[1] YE S, DING C M, LIU M Y et al. Water oxidation catalysts for artificial photosynthesis[J]. Advanced Materials, 31, 1902069(2019).
[3] WU Y S, LIU X J, HAN D D et al. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis[J]. Nature Communications, 9, 1-9(2018).
[4] WEI J M, LÜ Q, WANG B C et al. Synthesis of cubic-relievo Ag3PO4 with high visible-light photocatalytic activity[J]. Journal of Inorganic Materials, 34, 786-790(2019).
[5] WANG Y D, TIAN W, CHEN C et al. Tungsten trioxide nanostructures for photoelectrochemical water splitting: material engineering and charge carrier dynamic manipulation[J]. Advanced Functional Materials, 29, 1809036(2019).
[6] ZHANG J J, CHANG X X, LI C C et al. WO3 photoanodes with controllable bulk and surface oxygen vacancies for photoelectrochemical water oxidation[J]. Journal of Materials Chemistry A, 6, 3350-3354(2018).
[7] FU J W, XU Q L, LOW J X et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Applied Catalysis B: Environmental, 243, 556-565(2019).
[9] CAO F R, MENG L X, WANG M et al. Gradient energy band driven high-performance self-powered perovskite/CdS photodetector[J]. Advanced Materials, 30, 1806725-1-7(2019).
[19] CHEN S, ZENG L, TIAN H et al. Enhanced lattice oxygen reactivity over Ni-modified WO3-based redox catalysts for chemical looping partial oxidation of methane[J]. ACS Catalysis, 7, 3548-3559(2017).
[20] WANG F G, VALENTIN C D, PACCHIONI G. Semiconductor-to- metal transition in WO3-x: nature of the oxygen vacancy[J]. Physical Review B, 84, 073103-1-5(2011).
[21] MA Y L, FENG B, LANG J Y et al. Synthesis of semi-metallic tungsten trioxide for infrared light photoelectrocatalytic water splitting[J]. The Journal of Physical Chemistry C, 123, 25833-25843(2019).
[23] BAI S, ZHANG N, GAO C et al. Defect engineering in photocatalytic materials[J]. Nano Energy, 53, 296-336(2018).
[26] FORMAL F L, SIVULA K, GRATZEL M. The transient photocurrent and photovoltage behavior of a hematite photoanode under working conditions and the influence of surface treatments[J]. The Journal of Physical Chemistry C, 116, 26707-26720(2012).
[29] WANG G M, LING Y C, WANG H Y et al. Hydrogen-treated WO3 nanoflakes show enhanced photostability[J]. Energy & Environmental Science, 5, 6180-6187(2012).
[30] ZHANG J J, ZHANG P, WANG T et al. Monoclinic WO3 nanomultilayers with preferentially exposed (002) facets for photoelectrochemical water splitting[J]. Nano Energy, 11, 189-195(2015).
[32] LÜ Y, ZHU Y, ZHU Y. Enhanced photocatalytic performance for the BiPO4-x nanorod induced by surface oxygen vacancy[J]. The Journal of Physical Chemistry C, 117, 18520-18528(2013).
[33] WANG J, JIANG W, LIU D et al. Photocatalytic performance enhanced via surface bismuth vacancy of Bi6S2O15 core/shell nanowires[J]. Applied Catalysis B: Environmental, 306-314(2015).
[34] LI Y S, TANG Z L, ZHANG J Y et al. Defect engineering of air- treated WO3 and its enhanced visible light-driven photocatalytic and electrochemical performance[J]. The Journal of Physical Chemistry C, 120, 9750-9763(2016).
[35] ZHONG Y Y, ZHAO G, MA F K et al. Utilizing photocorrosion- recrystallization to prepare a highly stable and efficient CdS/WS2 nanocomposite photocatalyst for hydrogen evolution[J]. Applied Catalysis B: Environmental, 199, 466-472(2016).
[36] JIN J, YU J G, GUO D P et al. A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity[J]. Small, 11, 5262-5271(2015).
[38] ZONG X, HAN J F, MA G J et al. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation[J]. The Journal of Physical Chemistry C, 115, 12202-12208(2011).
[40] MENG S G, CAO Z S, FU X L et al. Fabrication of hydrophilic S/In2O3 core-shell nanocomposite for enhancement of photocatalytic performance under visible light irradiation[J]. Applied Surface Science, 324, 188-197(2015).
Get Citation
Copy Citation Text
hai LIN, Weitao SU, Yu ZHU, Pai PENG, Miao FENG, Yan YU.
Category: RESEARCH PAPER
Received: Jan. 13, 2020
Accepted: --
Published Online: Mar. 10, 2021
The Author Email: Miao FENG (mfeng@fzu.edu.cn), Yan YU (yuyan@fzu.edu.cn)