Photonic Sensors, Volume. 15, Issue 2, 250204(2025)
Optical Fiber Hydrogen Sensor Based on π-Phase-Shifted Grating and Sputtered Pd/Hf Composite Film
[1] [1] B. Lin and Z. Li, “Towards world’s low carbon development: the role of clean energy,”Applied Energy, 2022, 307: 118160.
[2] [2] Y. Luo, C. Zhang, B. Zheng, X. Geng, and M. Debliquy, “Hydrogen sensors based on noble metal doped metal-oxide semiconductor: a review,”International Journal of Hydrogen Energy, 2017, 42(31): 20386–20397.
[3] [3] M. P. Pujad, J. M. S. Gordillo, H. Avireddy, A. Cabot, A. Morata, and A. Tarancn, “Highly sensitive self-powered H2 sensor based on nanostructured thermoelectric silicon fabrics,”Advanced Materials Technologies, 2021, 6(1): 2000870.
[4] [4] C. Wang, J. Yang, J. Li, C. Luo, X. Xu, and F. Qian, “Solid-state electrochemical hydrogen sensors: a review,”International Journal of Hydrogen Energy, 2023, 48(80): 31377–31391.
[5] [5] G. Wang, J. Dai, and M. Yang, “Fiber-optic hydrogen sensors: a review,”IEEE Sensors Journal, 2021, 21(11): 12706–12718.
[6] [6] Y. Kimura, K. Ibano, K. Uehata, I. Hirai, H. T. Lee, and Y. Ueda, “Improved hydrogen gas sensing performance of WO3 films with fibrous nanostructured surface,”Applied Surface Science, 2020, 532: 147274.
[7] [7] J. Wang, J. Dai, W. Hu, F. Zhang, and M. Yang, “Improved performance of fiber-optic hydrogen sensor of porous Pt/WO3 based on ZIF-8,”International Journal of Hydrogen Energy, 2024, 51: 909–916.
[8] [8] G. Wang, Y. Qin, J. Dai, S. Yang, Y. Ma, T. Zou,et al., “Performance-enhanced optical fiber hydrogen sensors based on WO3-Pd2Pt-Pt composite film with controlled optical heating,”Optical Fiber Technology, 2019, 52: 101979.
[9] [9] C. Wang, Z. Han, C. Wang, G. D. Peng, Y. J. Rao, and Y. Gong, “Highly sensitive fiber grating hydrogen sensor based on hydrogen-doped Pt/WO3,”Sensors and Actuators B: Chemical, 2024, 404: 135250.
[10] [10] J. X. Dai, M. H. Yang, X. Yu, K. Cao, and J. S. Liao, “Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material,”Sensors and Actuators B: Chemical, 2012, 174: 253–257.
[11] [11] A. Abdalwareth, G. Flachenecker, M. Angelmahr, and W. Schade, “Optical fiber evanescent hydrogen sensor based on palladium nanoparticles coated Bragg gratings,”Sensors and Actuators A: Physical, 2023, 361: 114594.
[12] [12] M. Fisser, R. A. Badcock, P. D. Teal, S. Janssens, and A. Hunze, “Palladium-based hydrogen sensors using fiber Bragg gratings,”Journal of Lightwave Technology, 2018, 36(4): 850–856.
[13] [13] M. Mikami, D. Komatsu, A. Hosoki, M. Nishiyama, H. Igawa, A. Seki,et al., “Quick response hydrogen LSPR sensor based on a hetero-core fiber structure with palladium nanoparticles,”Optics Express, 2020, 29(1): 48–58.
[14] [14] F. Xu, J. Ma, K. Hu, Z. Zhang, C. Ma, B. O. Guan,et al., “Ultrahigh sensitivity of hydrogen detection with a perforated Pd film on a miniature fiber tip,”Sensors and Actuators B: Chemical, 2024, 400: 134875.
[15] [15] H. Araki, M. Nakamura, S. Harada, T. Obata, N. Mikhin, V. Syvokon,et al., “Phase diagram of hydrogen in palladium,”Journal of Low Temperature Physics, 2004, 134(5–6): 1145–1151.
[16] [16] J. Dai, M. Yang, X. Yu, and H. Lu, “Optical hydrogen sensor based on etched fiber Bragg grating sputtered with Pd/Ag composite film,”Optical Fiber Technology, 2013, 19(1): 26–30.
[17] [17] Y. Liu and Y. Li, “Enhanced sensitivity of transmission based optical fiber hydrogen sensor with multi-layer Pd-Y alloy thin film,”Sensors and Actuators B: Chemical, 2016, 227: 178–184.
[18] [18] D. Luna-Moreno, D. Monzn-Hernndez, J. Villatoro, and G. Badenes, “Optical fiber hydrogen sensor based on core diameter mismatch and annealed Pd-Au thin films,”Sensors and Actuators B: Chemical, 2007, 125(1): 66–71.
[19] [19] C. Boelsma, L. J. Bannenberg, M. J. van Setten, N. J. Steinke, A. A. van Well, and B. Dam, “Hafnium − an optical hydrogen sensor spanning six orders in pressure,”Nature Communications, 2017, 8: 15718.
[20] [20] L. J. Bannenberg, C. Boelsma, H. Schreuders, S. Francke, N. J. Steinke, A. A. van Well,et al., “Optical hydrogen sensing beyond palladium: hafnium and tantalum as effective sensing materials,”Sensors and Actuators B: Chemical, 2019, 283: 538–548.
[21] [21] M. Buric, K. P. Chen, M. Bhattarai, P. R. Swinehart, and M. Maklad, “Active fiber Bragg grating hydrogen sensors for all-temperature operation,”IEEE Photonics Technology Letters, 2007, 19(5–8): 255–257.
[22] [22] X. Hu, W. Hu, J. Dai, H. Ye, F. Zhang, M. Yang,et al., “Performance of fiber-optic hydrogen sensor based on locally coated-shifted FBG,”IEEE Sensors Journal, 2022, 22(24): 23982–23989.
[23] [23] F. Buchfellner, Q. Bian, W. Hu, X. Hu, M. Yang, A. W. Koch,et al., “Temperature-decoupled hydrogen sensing with Pi-shifted fiber Bragg gratings and a partial palladium coating,”Optics Letters, 2022, 48(1): 73–76.
[24] [24] M. A. Almeida, J. M. de Almeida, and L. C. Coelho, “Impact of gaseous interferents on palladium expansion for hydrogen optical sensing: a time stability study,”Optics & Laser Technology, 2024, 170: 110193.
Get Citation
Copy Citation Text
ZHANG Fan, BUCHFELLNER Fabian, HU Wenbin, AO Wenxin, BIAN Qiang, ROTHS Johannes, YANG Minghong. Optical Fiber Hydrogen Sensor Based on π-Phase-Shifted Grating and Sputtered Pd/Hf Composite Film[J]. Photonic Sensors, 2025, 15(2): 250204
Received: May. 4, 2024
Accepted: May. 13, 2025
Published Online: May. 13, 2025
The Author Email: