Journal of Synthetic Crystals, Volume. 51, Issue 9-10, 1794(2022)
Influence of Poling Methods on the Properties of PZT-4 Piezoelectric Ceramics
[1] [1] CHU S Y, CHEN T Y, TSAI I T. Effects of sintering temperature on the dielectric and piezoelectric properties of Nb-doped PZT ceramics and their applications[J]. Integrated Ferroelectrics, 2003, 58(1): 1293-1303.
[2] [2] RICOTE J, WHATMORE R W, BARBER D J. Studies of the ferroelectric domain configuration and polarization of rhombohedral PZT ceramics[J]. Journal of Physics: Condensed Matter, 2000, 12(3): 323-337.
[3] [3] ZHENG H, REANEY I M, LEE W E, et al. Effects of strontium substitution in Nb-doped PZT ceramics[J]. Journal of the European Ceramic Society, 2001, 21(10/11): 1371-1375.
[4] [4] LIU X L, WANG G D, LI M Y, et al. Development of hard high-temperature piezoelectric ceramics for actuator applications[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(12): 9350-9354.
[5] [5] GUO R, CROSS L E, PARK S E, et al. Origin of the high piezoelectric response in PbZr1-xTixO3[J]. Physical Review Letters, 2000, 84(23): 5423-5426.
[6] [6] VENKATRAGAVARAJ E, SATISH B, VINOD P R, et al. Piezoelectric properties of ferroelectric PZT-polymer composites[J]. Journal of Physics D: Applied Physics, 2001, 34(4): 487-492.
[7] [7] BABU T A, RAMESH K V, BADAPANDA T, et al. Structural and electrical studies of excessively Sm2O3 substituted soft PZT nanoceramics[J]. Ceramics International, 2021, 47(22): 31294-31301.
[9] [9] AMARANDE L, CIOANGHER M C, TOMA V, et al. Hard/soft effects of multivalence co-dopants in correlation with their location in PZT ceramics[J]. Ceramics International, 2021, 47(23): 33382-33389.
[10] [10] HOU Y D, ZHU M K, TIAN C S, et al. Structure and electrical properties of PMZN-PZT quaternary ceramics for piezoelectric transformers[J]. Sensors and Actuators A: Physical, 2004, 116(3): 455-460.
[11] [11] MARSILIUS M, GRANZOW T, JONES J L. Effect of electrical and mechanical poling history on domain orientation and piezoelectric properties of soft and hard PZT ceramics[J]. Science and Technology of Advanced Materials, 2011, 12(1): 015002.
[12] [12] MOROZOV M I, EINARSRUD M A, TOLCHARD J R, et al. In-situ structural investigations of ferroelasticity in soft and hard rhombohedral and tetragonal PZT[J]. Journal of Applied Physics, 2015, 118(16): 164104.
[13] [13] RANJAN R, KUMAR R, KUMAR N, et al. Impedance and electric modulus analysis of Sm-modified Pb(Zr0.55Ti0.45)1-x/4O3 ceramics[J]. Journal of Alloys and Compounds, 2011, 509(22): 6388-6394.
[14] [14] TAKAHASHI S. Effects of impurity doping in lead zirconate-titanate ceramics[J]. Ferroelectrics, 1982, 41(1): 143-156.
[15] [15] SLOUKA C, KAINZ T, NAVICKAS E, et al. The effect of acceptor and donor doping on oxygen vacancy concentrations in lead zirconate titanate (PZT)[J]. Materials, 2016, 9(11): E945.
[16] [16] YI M X. Research on the polarization technology of PZT piezoelectric ceramic[J]. Piezoelectric & Acoustooptics, 2006, 28(6): 736-737.
[17] [17] UNRUAN M, ANANTA S, LAOSIRITAWORN Y, et al. Effects of parallel and perpendicular compressive stresses on the dielectric and ferroelectric properties of soft PZT ceramics[J]. Ferroelectrics, 2010, 400(1): 144-154.
[18] [18] FRMLING T, SCHINTLMEISTER A, HUTTER H, et al. Oxide ion transport in donor-doped Pb(ZrxTi1-x)O3: the role of grain boundaries[J]. Journal of the American Ceramic Society, 2011, 94(4): 1173-1181.
[19] [19] GALLO C A, SCHULZE W A. Alternating-current-assisted poling of lead zirconate titanate (PZT)[J]. Journal of the American Ceramic Society, 1987, 70(2): C-33.
[20] [20] DEANGELIS D A, SCHULZE G W. Performance of PZT8 versus PZT4 piezoceramic materials in ultrasonic transducers[J]. Physics Procedia, 2016, 87: 85-92.
[21] [21] RAMACHANDRAN V P, THOMAS D, VINOD T K. Design and development of a broadband spherical hydrophone using PZT-4[J].ISSS Journal of Micro and Smart Systems, 2020, 9(2): 163-171.
[22] [22] JO W, RDEL J. Electric-field-induced volume change and room temperature phase stability of (Bi1/2Na1/2)TiO3-x mol.% BaTiO3 piezoceramics[J]. Applied Physics Letters, 2011, 99(4): 042901.
[23] [23] LUO C, KARAKI T, YAMASHITA Y, et al. High temperature and low voltage AC poling for 0.24Pb(In1/2Nb1/2)O3-0.46Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 piezoelectric single crystals manufactured by continuous-feeding Bridgman method[J]. Journal of Materiomics, 2021, 7(3): 621-628.
[24] [24] SUN Y Q, KARAKI T, FUJII T, et al. Enhanced electric property of relaxor ferroelectric crystals with low AC voltage high-temperature poling[J]. Japanese Journal of Applied Physics, 2020, 59(SP): SPPD08.
[25] [25] CHANG W Y, CHUNG C C, LUO C T, et al. Dielectric and piezoelectric properties of 0.7 Pb(Mg1/3Nb2/3)O3-0.3 PbTiO3 single crystal poled using alternating current[J]. Materials Research Letters, 2018, 6(10): 537-544.
[26] [26] TAO H, WU J G. New poling method for piezoelectric ceramics[J]. Journal of Materials Chemistry C, 2017, 5(7): 1601-1606.
[27] [27] WAN H T, LUO C T, CHUNG C C, et al. Enhanced dielectric and piezoelectric properties of manganese-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals by alternating current poling[J]. Applied Physics Letters, 2021, 118(10): 102904.
[28] [28] HONG C H, WANG Z J, SU B, et al. Enhanced piezoelectric and dielectric properties of Pb(Yb1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals by combining alternating and direct current poling[J]. Journal of Applied Physics, 2021, 129(12): 124101.
Get Citation
Copy Citation Text
HU Yudong, WANG Yuequn, KONG Shuyan, ZHANG Wenjie, YANG Xiaoming, WANG Zujian, SU Rongbing, LONG Xifa, HE Chao. Influence of Poling Methods on the Properties of PZT-4 Piezoelectric Ceramics[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1794
Category:
Received: Aug. 18, 2022
Accepted: --
Published Online: Nov. 18, 2022
The Author Email: HU Yudong (huyudong@fjirsm.ac.cn)
CSTR:32186.14.