Chinese Journal of Lasers, Volume. 44, Issue 6, 602001(2017)
Effects of Powder-Mixing Homogeneity and W-Powder Morphology on Forming Quality in Laser Direct Forming of W-Cu Composites
[1] [1] Fan Jinglian, Peng Shigao, Liu Tao, et al. Application and latest development of W-Cu composite materials[J]. Rare Metals and Cemented Carbides, 2006, 34(3): 30-35.
[2] [2] Fan Jinglian, Yan Dejian, Huang Boyun, et al. Current status of of W-Cu composite materials in China and abroad[J]. Powder Metallurgy Industry, 2003, 13(2): 9-14.
[3] [3] Zhou Wuping, Lü Daming. Development of application and production in W-Cu materials[J]. Materials Science & Engineering of Powder Metallargy, 2005, 10(1): 21-25
[4] [4] Ibrahim A, Abdallah M, Mostafa S F, et al. An experimental investigation on the W-Cu composites[J]. Materials & Design, 2009, 30(4): 1398-1403.
[5] [5] Hamidi A G, Arabi H, Rastegari S. Tungsten-copper composite production by activated sintering and infiltration[J]. International Journal of Refractory Metals & Hard Materials, 2011, 29(4): 538-541.
[6] [6] Chen P, Luo G, Shen Q, et al. Thermal and electrical properties of W-Cu composite produced by activated sintering[J]. Materials & Design, 2013, 46(4): 101-105.
[7] [7] Liu Tao, Fan Jinglian, Tian Jiamin, et al. Synthesis and sintering of ultra-fine/nanometer W-10%Cu composite powder[J]. Journal of Central South University (Science and Technology), 2009, 40(5): 1235-1239.
[8] [8] Hollander D A, von Walter M, Wirtz T, et al. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming[J]. Biomaterials, 2006, 27(7): 955-963.
[9] [9] Zitala M, Durejko T, Polański M, et al. The microstructure, mechanical properties and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping[J]. Materials Science and Engineering: A, 2016, 677: 1-10.
[10] [10] Pintsuk G, Brünings S E, Dring J E, et al. Development of W/Cu—functionally graded materials[J]. Fusion Engineering & Design, 2003, 66-68: 237-240.
[11] [11] Lü L, Fuh J Y H, Wong Y S. Metal-based system via laser melting[M]// Laser-Induced Materials and Processes for Rapid Prototyping. New York: Springer , 2001: 143-186.
[12] [12] Li R, Shi Y, Liu J, et al. Selective laser melting W-10 wt.% Cu composite powders[J]. The International Journal of Advanced Manufacturing Technology, 2010, 48(5): 597-605.
[15] [15] Wang L, Pratt P, Felicelli S D, et al. Pore formation in laser-assisted powder deposition process[J]. Journal of Manufacturing Science and Engineering, 2009, 131(5): 051008.
[16] [16] Zhang Fengying, Chen Jing, Tan Hua, et al. Research on forming mechanism of defects in laser rapid formed titaniumalloy[J]. Rare Metal Materials & Engineering, 2007, 36(2): 211-215.
[17] [17] Savitha U, Gokhale H, Reddy G J, et al. Effect of process parameters on porosity in laser deposited IN625 alloy[J]. Transactions of the Indian Institute of Metals, 2012, 65(6): 765-770.
[18] [18] Huang Yu, Tang Huiping, Zhang Hanliang, et al. Effect of irregular Ti-6Al-4V powder particle size on rapid laser forming[J]. Rare Metal Materials & Engineering, 2007, 36(9): 394-398.
Get Citation
Copy Citation Text
Yan Shenping, Zhang Anfeng, Li Dichen, Cao Weichan, Zhang Lianzhong, Wang Tan, Liang Shaoduan. Effects of Powder-Mixing Homogeneity and W-Powder Morphology on Forming Quality in Laser Direct Forming of W-Cu Composites[J]. Chinese Journal of Lasers, 2017, 44(6): 602001
Category: laser manufacturing
Received: Jan. 9, 2017
Accepted: --
Published Online: Jun. 8, 2017
The Author Email: Shenping Yan (yanshenping@gmail.com)