Journal of Optoelectronics · Laser, Volume. 35, Issue 10, 1066(2024)

Time evolution properties of electron motion and radiation in tightly focused laser pulses

JI Miao1, XU Yifan1, HU Fanghui1, and TIAN Youwei2
Author Affiliations
  • 1Bell Honors School, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210046, China
  • 2School of Science, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210046, China
  • show less
    References(15)

    [1] [1] QUARTERMAN A, WILCOX K, APOSTOLOPOULOS V, et al. A passively mode-locked external-cavity semiconductor laser emitting 60 fs pulses[J]. Nature Photonics, 2009, 3(12): 729-731.

    [3] [3] LAU Y Y, HE F, UMSTADTER D P, et al. Nonlinear Thomson scattering: A tutorial[J]. Physics of Plasmas, 2003, 10(5): 2155-2162.

    [6] [6] ANDR T, ANDRIYASH I A, LOULERGUE A, et al. Control of laser plasma accelerated electrons for light sources[J]. Nature Communications, 2018, 9(1): 1334.

    [8] [8] SUORTTI P, THOMLINSON W. Medical applications of synchrotron radiation[J]. Physics in Medicine & Biology, 2003, 48(13): R1.

    [9] [9] BALTUKA A, UDEM T, UIBERACKER M, et al. Attosecond control of electronic processes by intense light fields[J]. Nature, 2003, 421(6923): 611-615.

    [13] [13] YAN W, FRUHLING C, GOLOVIN G, et al. High-order multiphoton Thomson scattering[J]. Nature Photonics, 2017, 11(8): 514-520.

    [15] [15] LEE K, CHA Y H, SHIN M S, et al. Relativistic nonlinear Thomson scattering as attosecond X-ray source[J]. Physical Review E, 2003, 67(2): 026502.

    [16] [16] BOROVSKIY A V, GALKIN A L. Saturation of electron emission with increasing ultrarelativistic intensity of the Gaussian laser pulse[J]. Laser Physics Letters, 2021, 18(6): 066002.

    [17] [17] TAIRA Y, HAYAKAWA T, KATOH M. Gamma-ray vortices from nonlinear inverse Thomson scattering of circularly polarized light[J]. Scientific Reports, 2017, 7(1): 5018.

    [18] [18] TAIRA Y, KATOH M. Generation of optical vortices by nonlinear inverse Thomson scattering at arbitrary angle interactions[J]. The Astrophysical Journal, 2018, 860(1): 45.

    [19] [19] ZHUANG J, YAN Y, ZHOU X, et al. Quasi-monochromatic spectral emission characteristics from electron collision with tightly focused laser pulses[J]. Laser Physics, 2021, 31(3): 035401.

    [20] [20] ZHUANG J, WANG Y, WANG C, et al. Spectral shape of quasi-monochromatic radiation from electron colliding with tightly focused laser pulses[J]. Laser Physics, 2021, 31(6): 065403.

    [21] [21] LI K, LI L, SHU Q, et al. Spatial characteristics of motion and emission from electron driven by linearly polarized tightly focused laser pulses[J]. Optik, 2019, 183: 813-817.

    [24] [24] KRAFFT G A. Spectral distributions of Thomson-scattered photons from high-intensity pulsed lasers[J]. Physical Review Letters, 2004, 92(20): 204802.

    [26] [26] WANG Y, ZHOU Q, ZHUANG J, et al. Vortex and symmetric radiation character of nonlinear Thomson scattering in Laguerre-Gaussian circularly polarized laser pulses[J]. Optics Express, 2021, 29(14): 22636-22647.

    Tools

    Get Citation

    Copy Citation Text

    JI Miao, XU Yifan, HU Fanghui, TIAN Youwei. Time evolution properties of electron motion and radiation in tightly focused laser pulses[J]. Journal of Optoelectronics · Laser, 2024, 35(10): 1066

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 12, 2023

    Accepted: Dec. 31, 2024

    Published Online: Dec. 31, 2024

    The Author Email:

    DOI:10.16136/j.joel.2024.10.0092

    Topics