Opto-Electronic Engineering, Volume. 51, Issue 1, 230292-1(2024)

Surface defect detection of solar cells using local and global feature fusion

Zhiyong Tao1, Yan He1、*, Sen Lin2, Tingjun Yi1, and Yaosheng Zhang1
Author Affiliations
  • 1School of Electronic and Information Engineering, Liaoning Technical University, Huludao, Liaoning 125105, China
  • 2School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang, Liaoning 110159, China
  • show less
    Figures & Tables(15)
    Coordinate attention
    Ghost focus module
    Ghost vision module
    CViT-Net network structure diagram
    Solar cell types
    Solar cell defect detection process
    Comparison chart of model accuracy compared to calculation amount and parameter amount
    Visual positioning results under YOLOv5 detection framework
    • Table 1. CViT-Net model parameter table

      View table
      View in Article

      Table 1. CViT-Net model parameter table

      输入分辨率模块输出分辨率CViT-Net-SCViT-Net-L
      输出通道数重复输出通道数重复
      224 × 224Inception224 × 224121241
      224 × 224G-C2F112 × 112241482
      112 × 112G-C2F56 × 56482962
      56 × 56G-ViT28 × 289621922
      28 × 28G-ViT14 × 1419243844
      14 × 14G-ViT7 × 738427682
      7 × 7池化1× 138417681
      1 × 1Conv2d1 × 138417681
      1 × 1Conv2d1 × 1K1K1
      Parameter5.6 M21.9 M
      FLOPs1.52 G6.49 G
    • Table 2. Classify and detect experimentally different parameter values

      View table
      View in Article

      Table 2. Classify and detect experimentally different parameter values

      名称分类实验检测实验
      输入图像分辨率224 × 224640 × 640
      训练轮数 (epoch)100300
      批量尺寸 (Batch size)408
    • Table 3. Comparison of advanced convolutional neural network algorithms

      View table
      View in Article

      Table 3. Comparison of advanced convolutional neural network algorithms

      模型测试分辨率Precision/%Recall/%Accuracy/%Parameter/MFLOPs/G
      ResNet50224×22493.0795.0694.3823.54.11
      DenseNet121224×22490.0393.7891.606.92.86
      EfficientNet-B0224×22492.3394.1193.605.30.39
      RegNet224×22493.2595.1794.4024.56.52
      MobileVit224×22491.4895.2893.105.61.44
      MobileNetV3224×22492.7893.7892.205.40.23
      ShuffleNetV2224×22491.4294.7893.003.40.13
      GhostNet224×22491.5695.4693.203.92.45
      CViT-Net-S224×22493.0095.9494.505.61.52
      CViT-Net-L224×22493.7096.2895.1021.96.49
    • Table 4. Attention mechanism performance comparison

      View table
      View in Article

      Table 4. Attention mechanism performance comparison

      模型Precision/%Recall/%Accuracy/%Parameter/MFLOPs/G
      CViT-Net79.8680.2586.784.594.2
      CViT-Net+SE80.7480.5887.685.601.53
      CViT-Net+CBAM87.087.692.245.631.54
      CViT-Net+EMA87.986.493.205.641.72
      CViT-Net+CA93.0095.9494.505.641.52
    • Table 5. CViT-Net-S network ablation experiment

      View table
      View in Article

      Table 5. CViT-Net-S network ablation experiment

      模型G-C2FG-ViTCAParameter/MFLOPs/GAccuracy/%
      Baseline---14.84.286.78
      CViT-Net-S--8.91.3592.15
      CViT-Net-S-12.61.5192.31
      CViT-Net-S5.61.5294.50
    • Table 6. Experimental comparison of different target detection algorithms

      View table
      View in Article

      Table 6. Experimental comparison of different target detection algorithms

      模型mAP/%mAP50/%
      隐裂暗斑 瑕疵
      Two stage:
      Faster R-CNN( ResNet50)86.185.476.882.8
      Cascade:R-CNN( ResNet50)89.386.879.985
      Sparse R-CNN( ResNet50)74.575.464.171.3
      FoveaBox( ResNet50)88.385.261.878.5
      One stage:
      RetinaNet( ResNet50)78.784.263.375.4
      VFNet( ResNet50)53.256.249.753
      YOLOv5S86.289.686.789.4
      YOLOv6S87.489.486.587.8
      YOLOv780.886.781.282.9
      YOLOv8S86.988.186.087.0
      YOLOX-S88.188.887.288
      PPYOLOE-S87.789.984.587.4
      YOLOv5(CViT-Net-S)89.493.587.490.1
      YOLOv5(CViT-Net-L)89.593.687.590.2
    • Table 7. YOLOv5 backbone network comparison experiment

      View table
      View in Article

      Table 7. YOLOv5 backbone network comparison experiment

      检测框架骨干网络Precision/%Recall/%mAP/%mAP50/%
      YOLOv5ResNet5083.985.148.486.3
      YOLOv5DenseNet12183.283.949.088.1
      YOLOv5EfficientNet87.084.952.189.3
      YOLOv5RegNet86.385.552.888.9
      YOLOv5MobileVit82.982.049.987.4
      YOLOv5MobileNetV389.586.558.389.8
      YOLOv5ShuffleNetV283.780.448.686.8
      YOLOv5GhostNet85.686.352.889.3
      YOLOv5CViT-Net-S87.287.156.290.1
      YOLOv5CViT-Net-L90.187.361.190.2
    Tools

    Get Citation

    Copy Citation Text

    Zhiyong Tao, Yan He, Sen Lin, Tingjun Yi, Yaosheng Zhang. Surface defect detection of solar cells using local and global feature fusion[J]. Opto-Electronic Engineering, 2024, 51(1): 230292-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Dec. 1, 2023

    Accepted: Feb. 2, 2024

    Published Online: Apr. 19, 2024

    The Author Email: Yan He (何燕)

    DOI:10.12086/oee.2024.230292

    Topics