Chinese Journal of Lasers, Volume. 50, Issue 1, 0113005(2023)

Studies on Photophysical Properties of Nanoscale and Microscale Rare-Earth-Doped Upconverting Materials

Zeyu Deng1,2, Xiaohan Yang1,2, Jinwen Zhang1,2, Haoran Zhao1,2, Yihang Han1,2, Hao Dong2, and Jie Shen1、*
Author Affiliations
  • 1School of Materials Science and Engineering, Peking University, Beijing 100871, China
  • 2College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • show less
    References(59)

    [1] Qin X, Liu X W, Huang W et al. Lanthanide-activated phosphors based on 4f-5d optical transitions: theoretical and experimental aspects[J]. Chemical Reviews, 117, 4488-4527(2017).

    [2] Zheng B Z, Fan J Y, Chen B et al. Rare-earth doping in nanostructured inorganic materials[J]. Chemical Reviews, 122, 5519-5603(2022).

    [3] Zhao J X, Chen B, Wang F. Shedding light on the role of misfit strain in controlling core-shell nanocrystals[J]. Advanced Materials, 32, 2004142(2020).

    [4] Zhou B, Shi B Y, Jin D Y et al. Controlling upconversion nanocrystals for emerging applications[J]. Nature Nanotechnology, 10, 924-936(2015).

    [5] Dong H, Du S R, Zheng X Y et al. Lanthanide nanoparticles: from design toward bioimaging and therapy[J]. Chemical Reviews, 115, 10725-10815(2015).

    [6] Zhou J, Liu Q, Feng W et al. Upconversion luminescent materials: advances and applications[J]. Chemical Reviews, 115, 395-465(2015).

    [7] Liu Y S, Tu D T, Zhu H M et al. Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications[J]. Chemical Society Reviews, 42, 6924-6958(2013).

    [8] Zhang Y, Zhu X H, Zhang Y. Exploring heterostructured upconversion nanoparticles: from rational engineering to diverse applications[J]. ACS Nano, 15, 3709-3735(2021).

    [9] Sayre E V, Freed S. Spectra and quantum states of the europic ion in crystals. II. Fluorescence and absorption spectra of single crystals of europic ethylsulfate nonahydrate[J]. The Journal of Chemical Physics, 24, 1213-1219(1956).

    [10] Zhou J J, Chen G X, Wu E et al. Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped β-NaYF4 single nanorod[J]. Nano Letters, 13, 2241-2246(2013).

    [11] Chen P, Song M, Wu E et al. Polarization modulated upconversion luminescence: single particle vs. few-particle aggregates[J]. Nanoscale, 7, 6462-6466(2015).

    [12] Yang D D, Peng Z X, Zhan Q Q et al. Anisotropic excitation polarization response from a single white light-emitting β-NaYF4∶Yb3+, Pr3+ microcrystal[J]. Small, 15, 1904298(2019).

    [13] Yang D D, Peng Z X, Guo X et al. Tunable light polarization information from single upconverting fluoride microcrystal[J]. Advanced Optical Materials, 9, 2100044(2021).

    [14] Kim J, Chacón R, Wang Z J et al. Measuring 3D orientation of nanocrystals via polarized luminescence of rare-earth dopants[J]. Nature Communications, 12, 1943(2021).

    [15] Lyu Z Y, Dong H, Yang X F et al. Highly polarized upconversion emissions from lanthanide-doped LiYF4 crystals as spatial orientation indicators[J]. The Journal of Physical Chemistry Letters, 12, 11288-11294(2021).

    [16] Rodrã­Guez-Sevilla P, Labrador-Pãez L, Wawrzyńczyk D et al. Determining the 3D orientation of optically trapped upconverting nanorods by in situ single-particle polarized spectroscopy[J]. Nanoscale, 8, 300-308(2016).

    [17] Rodríguez-Sevilla P, Zhang Y H, de Sousa N et al. Optical torques on upconverting particles for intracellular microrheometry[J]. Nano Letters, 16, 8005-8014(2016).

    [18] Green K K, Wirth J, Lim S F. Nanoplasmonic upconverting nanoparticles as orientation sensors for single particle microscopy[J]. Scientific Reports, 7, 762(2017).

    [19] Kim J, Michelin S, Hilbers M et al. Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography[J]. Nature Nanotechnology, 12, 914-919(2017).

    [20] Jin D Y, Xi P, Wang B M et al. Nanoparticles for super-resolution microscopy and single-molecule tracking[J]. Nature Methods, 15, 415-423(2018).

    [21] Dong H, Sun L D, Yan C H. Lanthanide-doped upconversion nanoparticles for super-resolution microscopy[J]. Frontiers in Chemistry, 8, 619377(2021).

    [22] Liu Y J, Lu Y Q, Yang X S et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy[J]. Nature, 543, 229-233(2017).

    [23] Zhan Q Q, Liu H C, Wang B J et al. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles[J]. Nature Communications, 8, 1058(2017).

    [24] Guo X, Pu R, Zhu Z M et al. Achieving low-power single-wavelength-pair nanoscopy with NIR-II continuous-wave laser for multi-chromatic probes[J]. Nature Communications, 13, 2843(2022).

    [25] Peng X Y, Huang B R, Pu R et al. Fast upconversion super-resolution microscopy with 10 μs per pixel dwell times[J]. Nanoscale, 11, 1563-1569(2019).

    [26] Kuang C F, Li S, Liu W et al. Breaking the diffraction barrier using fluorescence emission difference microscopy[J]. Scientific Reports, 3, 1441(2013).

    [27] Wu Q S, Huang B R, Peng X Y et al. Non-bleaching fluorescence emission difference microscopy using single 808-nm laser excited red upconversion emission[J]. Optics Express, 25, 30885-30894(2017).

    [28] Huang B R, Wu Q S, Peng X Y et al. One-scan fluorescence emission difference nanoscopy developed with excitation orthogonalized upconversion nanoparticles[J]. Nanoscale, 10, 21025-21030(2018).

    [29] Chen C H, Wang F, Wen S H et al. Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles[J]. Nature Communications, 9, 3290(2018).

    [30] Lee C, Xu E Z, Liu Y W et al. Giant nonlinear optical responses from photon-avalanching nanoparticles[J]. Nature, 589, 230-235(2021).

    [31] Liang Y S, Zhu Z M, Qiao S Q et al. Migrating photon avalanche in different emitters at the nanoscale enables 46th-order optical nonlinearity[J]. Nature Nanotechnology, 17, 524-530(2022).

    [32] Hill M T, Gather M C. Advances in small lasers[J]. Nature Photonics, 8, 908-918(2014).

    [33] Smit M, van der Tol J, Hill M. Moore’s law in photonics[J]. Laser & Photonics Reviews, 6, 1-13(2012).

    [34] Ma R M, Oulton R F. Applications of nanolasers[J]. Nature Nanotechnology, 14, 12-22(2019).

    [35] Cho S, Humar M, Martino N et al. Laser particle stimulated emission microscopy[J]. Physical Review Letters, 117, 193902(2016).

    [36] Stockman M I. Nanoplasmonic sensing and detection[J]. Science, 348, 287-288(2015).

    [37] Schäfer J, Mondia J P, Sharma R et al. Quantum dot microdrop laser[J]. Nano Letter, 8, 1709-1712(2008).

    [38] Qian S X, Snow J B, Tzeng H M et al. Lasing droplets: highlighting the liquid-air interface by laser emission[J]. Science, 231, 486-488(1986).

    [39] Sandoghdar V, Treussart F, Hare J et al. Very low threshold whispering-gallery-mode microsphere laser[J]. Physical Review A, 54, R1777-R1780(1996).

    [40] Park Y S, Bae W K, Baker T et al. Effect of auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces[J]. Nano Letters, 15, 7319-7328(2015).

    [41] Kuehne A J C, Gather M C. Organic lasers: recent developments on materials, device geometries, and fabrication techniques[J]. Chemical Reviews, 116, 12823-12864(2016).

    [42] Zhi Y Y, Yu X C, Gong Q H et al. Single nanoparticle detection using optical microcavities[J]. Advanced Materials, 29, 1604920(2017).

    [43] Chen X, Sun T Y, Wang F. Lanthanide-based luminescent materials for waveguide and lasing[J]. Chemistry: an Asian Journal, 15, 21-33(2020).

    [44] Yang L Q, Yu J X. Study on the minimum size of whispering gallery mode laser based on microsphere cavity[J]. Optical Instruments, 43, 28-32(2021).

    [45] He L N, Özdemir Ş K, Yang L. Whispering gallery microcavity lasers[J]. Laser & Photonics Reviews, 7, 60-82(2013).

    [46] Wang M Y, Liu J Y, Li Y S et al. Research on stability of packaged optical microresonator device based on whispering-gallery mode[J]. Chinese Journal of Lasers, 49, 1713002(2022).

    [47] Wen Q, Zhou H, Qiu K. Research on mode excitation efficiency of whispering gallery mode optical microcavity[J]. Optical Communication Technology, 45, 33-36(2021).

    [48] Zhu H, Chen X, Jin L M et al. Amplified spontaneous emission and lasing from lanthanide-doped up-conversion nanocrystals[J]. ACS Nano, 7, 11420-11426(2013).

    [49] Chen X, Jin L M, Kong W et al. Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing[J]. Nature Communications, 7, 10304(2016).

    [50] Fernandez-Bravo A, Yao K Y, Barnard E S et al. Continuous-wave upconverting nanoparticle microlasers[J]. Nature Nanotechnology, 13, 572-577(2018).

    [51] Shang Y F, Zhou J J, Cai Y J et al. Low threshold lasing emissions from a single upconversion nanocrystal[J]. Nature Communications, 11, 6156(2020).

    [52] Liu Y W, Teitelboim A, Fernandez-Bravo A et al. Controlled assembly of upconverting nanoparticles for low-threshold microlasers and their imaging in scattering media[J]. ACS Nano, 14, 1508-1519(2020).

    [53] Yang X F, Lyu Z Y, Dong H et al. Lanthanide upconverted microlasing: microlasing spanning full visible spectrum to near-infrared under low power, CW pumping[J]. Small, 17, 2103140(2021).

    [54] Jin L M, Wu Y K, Wang Y J et al. Mass-manufactural lanthanide-based ultraviolet B microlasers[J]. Advanced Materials, 31, 1807079(2019).

    [55] Moon B S, Lee T K, Jeon W C et al. Continuous-wave upconversion lasing with a sub-10 W cm-2 threshold enabled by atomic disorder in the host matrix[J]. Nature Communications, 12, 4437(2021).

    [56] Ouyang T C, Kang S L, Zhang Z S et al. Microlaser output from rare-earth ion-doped nanocrystal-in-glass microcavities[J]. Advanced Optical Materials, 7, 1900197(2019).

    [57] Kataria M, Yadav K, Nain A et al. Self-sufficient and highly efficient gold sandwich upconversion nanocomposite lasers for stretchable and bio-applications[J]. ACS Applied Materials & Interfaces, 12, 19840-19854(2020).

    [58] Fernandez-Bravo A, Wang D Q, Barnard E S et al. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons[J]. Nature Materials, 18, 1172-1176(2019).

    [59] Wang T, Yu H, Siu C K et al. White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods[J]. ACS Photonics, 4, 1539-1543(2017).

    Tools

    Get Citation

    Copy Citation Text

    Zeyu Deng, Xiaohan Yang, Jinwen Zhang, Haoran Zhao, Yihang Han, Hao Dong, Jie Shen. Studies on Photophysical Properties of Nanoscale and Microscale Rare-Earth-Doped Upconverting Materials[J]. Chinese Journal of Lasers, 2023, 50(1): 0113005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: micro and nano optics

    Received: Aug. 18, 2022

    Accepted: Nov. 28, 2022

    Published Online: Jan. 6, 2023

    The Author Email: Shen Jie (shenjie@pku.edu.cn)

    DOI:10.3788/CJL221166

    Topics