Laser & Optoelectronics Progress, Volume. 60, Issue 2, 0210001(2023)

Non-Intrusive Electric Load Identification Algorithm for Optimizing Convolutional Neural Network Hyper-Parameters

Anjun Zhao1, Xiao Zhao1, Jing Jing2、*, Jiangtao Xi1, and Pufang Cui1
Author Affiliations
  • 1College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
  • 2China Northwest Architecture Design and Research Institute, Xi'an 710018, Shaanxi, China
  • show less
    Figures & Tables(12)
    Schematic diagrams of VI trajectories of refrigerator and compact fluorescent lamp. (a) (b) VI trajectories; (c) (d) pixelated images
    Structure diagram of CNN model
    PSO-CNN recognition model training flow chart
    Comparison of recognition accuracy
    Confusion matrix comparison of recognition results of each algorithm. (a) (b) CNN confusion matrix; (c) (d) PSO-CNN confusion matrix
    Comparison of feature extraction of each layer between CNN and PSO-CNN. (a) CFL; (b) refrigerator; (c) hairdryer; (d) fan
    Model classification performance comparison. (a) Fmacro based on PLAID dataset; (b) Fmacro based on WHITED dataset
    • Table 1. Hyper-parameters to be optimized and their range

      View table

      Table 1. Hyper-parameters to be optimized and their range

      LayerHyper-parameterDynamicrange
      ConvNumber of convolution kernels30-150
      Convolution kernel size2-7
      Convolution kernel stride1-4
      PoolingPooling kernel size2-7
      Pooling kernel stride1-4
      DropoutDropout probability0-1
    • Table 2. Parameters definition of particles in PSO

      View table

      Table 2. Parameters definition of particles in PSO

      Particle parameterParameters to be optimized
      a1The number of convolution kernels of convolution layer 1
      a2The convolution kernels size of the convolution layer 1
      a3The convolution kernel stride of convolution layer 1
      a4The pooling kernel size of pooling layer 1
      a5The pooling kernel stride of pooling layer 1
      a6The number of convolution kernels of convolution layer 2
      a7The convolution kernels size of the convolution layer 2
      a8The convolution kernels stride of convolution layer 2
      a9The pooling kernel size of pooling layer 2
      a10The pooling kernel stride of pooling layer 2
      a11Dropout probability
    • Table 3. Comparison of recognition accuracy of algorithms

      View table

      Table 3. Comparison of recognition accuracy of algorithms

      ModelRecognition accuracy
      PLAIDWHITED
      PSO-CNN93.2091.69
      CNN87.3382.17
      Reference[379.4072.01
      Reference[580.7072.98
      Reference[1482.4073.01
    • Table 4. Comparison of hyper-parameter information between CNN and PSO-CNN

      View table

      Table 4. Comparison of hyper-parameter information between CNN and PSO-CNN

      LayersParameterPLAIDWHIED
      CNNPSO-CNNCNNPSO-CNN
      Con1Number32503264
      Size5×55×55×55×5
      Step1212
      Pool1Size2×24×42×22×2
      Step1112
      Con2Number648064120
      Size5×53×35×53×3
      Step1212
      Pool2Size2×22×22×24×4
      Step1112
      DropoutProbability0.30.50.30.4
    • Table 5. Comparison of number of convolutional layer parameters, receptive field, and running time between CNN and PSO-CNN

      View table

      Table 5. Comparison of number of convolutional layer parameters, receptive field, and running time between CNN and PSO-CNN

      DatasetModelNumber of parameters of convolutionsModel receptive fieldRunning time /h
      Con1Con2Sum
      PLAIDCNN83216642496110.17
      PSO-CNN13008002100190.25
      WHITEDCNN83216642496110.15
      PSO-CNN166412002864390.32
    Tools

    Get Citation

    Copy Citation Text

    Anjun Zhao, Xiao Zhao, Jing Jing, Jiangtao Xi, Pufang Cui. Non-Intrusive Electric Load Identification Algorithm for Optimizing Convolutional Neural Network Hyper-Parameters[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0210001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Aug. 27, 2021

    Accepted: Nov. 8, 2021

    Published Online: Jan. 3, 2023

    The Author Email: Jing Jing (xby5s@163.com)

    DOI:10.3788/LOP212374

    Topics