Laser & Optoelectronics Progress, Volume. 62, Issue 11, 1127009(2025)
Research Progress of Acoustic Quantum State Regulation and Application Based on the Optomechanics (Invited)
[5] Braginskiĭ V B, Manukin A B[M]. Measurement of weak forces in physics experiments(1977).
[13] MacFarlane A G J, Dowling J P, Milburn G J. Quantum technology: the second quantum revolution[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 361, 1655-1674(2003).
[18] O’Connell A D, Hofheinz M, Ansmann M et al. Quantum ground state and single-phonon control of a mechanical resonator[J]. Nature, 464, 697-703(2010).
[29] Liu Y L, Sun H Y, Liu Q C et al. Degeneracy-breaking and long-lived multimode microwave electromechanical systems enabled by cubic silicon-carbide membrane crystals[J]. Nature Communications, 16, 1207(2025).
[30] Xia Z W, Tang J D, Jiang Q Y et al. Key technologies for detecting acoustic quantum states in one-dimensional optomechanical crystal nanobeam[J]. Journal of University of Electronic Science and Technology of China, 52, 322-330(2023).
[31] Wang Y, Shi Z P, Kuang H Y et al. Realization of quantum ground state in an optomechanical crystal cavity[J]. Science China Physics, 66, 124213(2023).
[35] Moores B A, Sletten L R, Viennot J J et al. Cavity quantum acoustic device in the multimode strong coupling regime[J]. Physical Review Letters, 120, 227701(2018).
[37] Cohen J D, Meenehan S M, MacCabe G S et al. Phonon counting and intensity interferometry of a nanomechanical resonator[J]. Nature, 520, 522-525(2015).
[38] Viennot J J, Ma X, Lehnert K W. Phonon-number-sensitive electromechanics[J]. Physical Review Letters, 121, 183601(2018).
[39] Arrangoiz-Arriola P, Wollack E A, Wang Z Y et al. Resolving the energy levels of a nanomechanical oscillator[J]. Nature, 571, 537-540(2019).
[40] Cleland A Y, Wollack E A, Safavi-Naeini A H. Studying phonon coherence with a quantum sensor[J]. Nature Communications, 15, 4979(2024).
[41] Vitali D, Gigan S, Ferreira A et al. Optomechanical entanglement between a movable mirror and a cavity field[J]. Physical Review Letters, 98, 030405(2007).
[42] Genes C, Ritsch H, Drewsen M et al. Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency[J]. Physical Review A, 84, 051801(2011).
[44] Palomaki T A, Teufel J D, Simmonds R W et al. Entangling mechanical motion with microwave fields[J]. Science, 342, 710-713(2013).
[46] Meesala S, Wood S, Lake D et al. Non-classical microwave-optical photon pair generation with a chip-scale transducer[J]. Nature Physics, 20, 871-877(2024).
[48] Riedinger R, Wallucks A, Marinković I et al. Remote quantum entanglement between two micromechanical oscillators[J]. Nature, 556, 473-477(2018).
[55] Li Y H, Xu A N, Huang L G et al. Mechanical squeezing via detuning-switched driving[J]. Physical Review A, 107, 033508(2023).
[59] Xie H, Liao C G, Shang X et al. Phonon blockade in a quadratically coupled optomechanical system[J]. Physical Review A, 96, 013861(2017).
[60] Huang G F, Deng W W, Tan H T et al. Generation of squeezed states and single-phonon states via homodyne detection and photon subtraction on the filtered output of an optomechanical cavity[J]. Physical Review A, 99, 043819(2019).
[62] Galinskiy I, Enzian G, Parniak M et al. Nonclassical correlations between photons and phonons of center-of-mass motion of a mechanical oscillator[J]. Physical Review Letters, 133, 173605(2024).
[82] Eichenfield M, Chan J, Camacho R M et al. Optomechanical crystals[J]. Nature, 462, 78-82(2009).
[99] Kumar P, Bhattacharya M. Single-photon transfer using levitated cavityless optomechanics[J]. Physical Review A, 99, 023811(2019).
[101] Wallucks A, Marinković I, Hensen B et al. A quantum memory at telecom wavelengths[J]. Nature Physics, 16, 772-777(2020).
[102] Krause A G, Winger M, Blasius T D et al. A high-resolution microchip optomechanical accelerometer[J]. Nature Photonics, 6, 768-772(2012).
[103] Guzmán C F, Kumanchik L, Pratt J et al. High sensitivity optomechanical reference accelerometer over 10 kHz[J]. Applied Physics Letters, 104, 221111(2014).
[108] Hassan J N A, Huang W Y, Wang M Y et al. Optomechanical gyroscope based on micro-hemispherical shell and optical ring resonators[J]. IEEE Photonics Journal, 16, 5800617(2024).
[109] Su D Q, Jiang Y, Solano P et al. Optomechanical feedback cooling of a 5 mm long torsional mode[J]. Photonics Research, 11, 2179-2184(2023).
[110] Abbott B P, Abbott R, Abbott T D et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 116, 061102(2016).
Get Citation
Copy Citation Text
Peiqin Chen, Jindao Tang, Liping Zeng, Hengrui Liang, Yifei Zhang, Xinyao Xu, Qizhi Cai, Daqian Guo, Haizhi Song, You Wang, Qiang Zhou, Jiang Wu, Guangcan Guo, Guangwei Deng. Research Progress of Acoustic Quantum State Regulation and Application Based on the Optomechanics (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(11): 1127009
Category: Quantum Optics
Received: Mar. 3, 2025
Accepted: Apr. 24, 2025
Published Online: May. 28, 2025
The Author Email: Guangwei Deng (gwdeng@uestc.edu.cn)
CSTR:32186.14.LOP250734