Journal of Advanced Dielectrics, Volume. 14, Issue 5, 2350026(2024)

Finite element modeling of piezoelectric cantilever-beam energy harvester

L. V. Duong*
Author Affiliations
  • Institute of Vehicle and Energy Engineering, Le Quy Don Technical University, Hanoi, Vietnam
  • show less
    References(29)

    [1] R. Tashiro, N. Kabei, K. Katayama, Y. Ishizuka, F. Tsuboi, K. Tsuchiya. Development of an electrostatic generator that harnesses the motion of a living body: (use of a resonant phenomenon). JSME Int. J. Ser. C, 43, 916(2000).

    [2] P. D. Mitcheson, P. Miao, B. H. Stark, E. Yeatman, A. Holmes, T. Green. MEMS electrostatic micropower generator for low frequency operation. Sens. Actuators A, 115, 523(2004).

    [3] S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, J. H. Lang. Vibration-to-electric energy conversion. IEEE Trans. Very Large Scale Integr. Syst., 9, 64(2001).

    [4] C. Williams, R. B. Yates. Analysis of a micro-electric generator for microsystems. Sens. Actuators A, 52, 8(1996).

    [5] P. Glynne-Jones, M. J. Tudor, S. P. Beeby, N. M. White. An electromagnetic, vibration-powered generator for intelligent sensor systems. Sens. Actuators A, 110, 344(2004).

    [6] D. P. Arnold. Review of microscale magnetic power generation. IEEE Trans. Magn., 43, 3940(2007).

    [7] R. Amirtharajah, A. P. Chandrakasan. Self-powered signal processing using vibration-based power generation. IEEE J. Solid-State Circuits, 33, 687(1998).

    [8] A. Erturk, D. J. Inman. Piezoelectric Energy Harvesting(2011).

    [9] S. R. Anton, H. A. Sodano. A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct., 16, R1(2007).

    [10] H. S. Kim, J.-H. Kim, J. Kim. A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manufact., 12, 1129(2011).

    [11] C. Covaci, A. Gontean. Piezoelectric energy harvesting solutions: A review. Sensors, 20, 3512(2020).

    [12] J. Ghazanfarian, M. M. Mohammadi. Piezoelectric energy harvesting: a systematic review of reviews. Actuators, 10, 312(2021).

    [13] M. Safaei, H. A. Sodano, S. R. Anton. A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018). Smart Mater. Struct., 28, 113001(2019).

    [14] K. A. Cook-Chennault, N. Thambi, A. M. Sastry. Powering MEMS portable devices-a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct., 17, 043001(2008).

    [15] N. E. Dutoit, B. L. Wardle, S.-G. Kim. Design Considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr. Ferroelectr., 71, 121(2005).

    [16] Y. B. Jeon, R. Sood, J. H. Jeong, S. G. Kim. MEMS power generator with transverse mode thin film PZT. Sens. Actuators A, 122, 16(2005).

    [17] S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M. Rabaey, P. K. Wright, V. Sundararajan. Improving power output for vibration-based energy scavengers. IEEE Perv. Comput., 4, 28(2005).

    [18] J. Twiefel, B. Richter, T. Sattel, J. Wallaschek. Power output estimation and experimental validation for piezoelectric energy harvesting systems. J. Electroceram., 20, 203(2008).

    [19] H. A. Sodano, G. Park, D. J. Inman. Estimation of electric charge output for piezoelectric energy harvesting. J. Strain, 40, 49(2004).

    [20] A. Erturk, D. J. Inman. Analytical modeling of cantilevered piezoelectric energy harvesters for transverse and longitudinal base motions. Proc. 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf.(2008).

    [21] Y. Liao, A. H. Sodano. Model of a single mode energy harvester and properties for optimal power generation. Smart Mater. Struct., 17, 065026(2008).

    [22] S. L. Vatanabe, G. H. Paulino, E. C. N. Silva. Design of functionally graded piezocomposites using topology optimization and homogenization – Toward effective energy harvesting materials. Comput. Methods Appl. Mech. Eng., 266, 205(2013).

    [23] A. N. Solovyev, L. V. Duong. Optimization for the harvesting structure of the piezoelectric bimorph energy harvesters circular plate by reduced order finite element analysis. Int. J. Appl. Mech., 8, 1650029(2016).

    [24] L. V. Duong, M. T. Pham, V. A. Chebanenko, A. N. Solovyev, C. V. Nguyen. Finite element modeling and experimental studies of stack-type piezoelectric energy harvester. Int. J. Appl. Mech., 9, 1750084(2017).

    [25] Md. Naim Uddin, Md. Shabiul Islam, M. Faisal Riyad, M. S. Bhuyan. Finite element analysis of piezoelectric cantilever beam using vibration for energy harvesting devices. AIP Conf. Proc., 2324, 030004(2021).

    [26] N. Sampath, D. Ezhilarasi. Analysis of cantilevered piezoelectric harvester with different proof mass geometry for low frequency vibrations. Mater. Today: Proc., 5, 21335(2018).

    [27] R. Shashank, S. K. Harisha, M. C. Abhishek. Modelling and analysis of piezoelectric cantilever energy harvester for different proof mass and material proportion. IOP Conf. Ser., Mater. Sci. Eng., 310, 012147(2018).

    [28] V. A. Akopyan, Yu. N. Zakharov, I. A. Parinov, E. V. Rozhkov, S. N. Shevtsov, V. A. Chebanenko, Ivan A. Parinov. Nano- and Piezoelectric Technologies, Materials and Devices(2013).

    [29] A. V. Belokon, A. V. Nasedkin, A. N. Soloviev. New Schemes for the finite-element dynamic analysis of piezoelectric devices. J. Appl. Math. Mech., 66, 481(2002).

    Tools

    Get Citation

    Copy Citation Text

    L. V. Duong. Finite element modeling of piezoelectric cantilever-beam energy harvester[J]. Journal of Advanced Dielectrics, 2024, 14(5): 2350026

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Sep. 27, 2023

    Accepted: Nov. 10, 2023

    Published Online: Jan. 2, 2025

    The Author Email: L. V. Duong (van-duong.le@lqdtu.edu.vn)

    DOI:10.1142/S2010135X23500261

    CSTR:32405.14.S2010135X23500261

    Topics