Infrared and Laser Engineering, Volume. 50, Issue 9, 20210447(2021)
Research progress of hybrid vector beams (Invited)
[1] Snitzer E. Cylindrical dielectric waveguide modes[J]. Journal of the Optical Society of America A, 51, 491-498(1961).
[2] Mushiake Y, Matsumura K, Nakajima N. Generation of radially polarized optical beam mode by laser oscillation[J]. Proceedings of the IEEE, 60, 1107-1109(1972).
[3] Pohl D. Operation of a ruby laser in the purely transverse electric mode TE01[J]. Applied Physics Letters, 20, 266-267(1972).
[4] Churin E G, Hobfeld J, Tschudi T.. Polarization configuration with singular point formed by computer generated holograms[J]. Optics Communications, 99, 13-17(1993).
[5] Tidwell S C, Kim G H, Kimura W D. Efficient radially polarized laser beam generation with a double interferometer[J]. Applied Optics, 32, 5222-5229(1993).
[6] Stalder M, Schadt M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters[J]. Optics Letters, 21, 1948-1950(1996).
[7] Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 7, 77-87(2000).
[8] Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 91, 233901(2003).
[9] Zhan Q, Leger J. Focus shaping using cylindrical vector beams[J]. Optics Express, 10, 324-331(2002).
[10] Kozawa Y, Sato S. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams[J]. Optics Express, 18, 10828-10833(2010).
[11] Meier M, Romano V, Feurer T. Material processing with pulsed radially and azimuthally polarized laser radiation[J]. Applied Physics A, 86, 329-334(2007).
[12] Zhan Q. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 1, 1-57(2009).
[13] Liu Z, Liu Y, Ke Y, et al. Geometric phase Doppler effect: when struct light meets rotating structured materials[J]. Optics Express, 25, 111564-11573(2017).
[14] Wang H, Shi L, Yuan G, et al. Subwavelength and super-resolution nondiffraction beam[J]. Applied Physics Letters, 89, 171102(2006).
[15] Zhang X, Xia T, Cheng S, et al. Free-space information transfer using the elliptic vortex beam with fractional topological charge[J]. Optics Communications, 431, 238-244(2019).
[16] Vieira J, Mendoca J T. Nonlinear laser drivendonutwakefields for positron and electron acceleration[J]. Physical Review Letters, 112, 215001(2014).
[17] Wang X, Li Y, Chen J, et al. A new type of vector fields with hybrid states of polarization[J]. Optics Express, 18, 10786-10795(2010).
[18] Beckley A M, Brown T G, Alonso M A. Full Poincaré beams[J]. Optics Express, 18, 10777-10785(2010).
[19] Yi X, Liu Y, Ling X, et al. Hybrid-order Poincare sphere[J]. Physical Review A, 91, 023801(2015).
[20] Arora G, Rajput R, Senthilkumaran P. Full Poincaré beam with all the Stokes vortices[J]. Optics Letters, 44, 5638-5641(2019).
[21] Ruchi A G, Senthilkumaran P. Hybrid order Poincaré spheres for Stokes singularities[J]. Optics Letters, 45, 5136-5139(2020).
[22] Liu Y, Liu Z, Zhou J, et al. Measurements of Pancharatnam–Berry phase in mode transformations on hybrid-order Poincaré sphere[J]. Optics Letters, 42, 3447-3450(2017).
[23] Wang H, Rui G, Zhan Q. Dynamic propagation of optical vortices embedded in full Poincaré beams with rotationally polarization symmetry[J]. Optics Communications, 351, 15-25(2015).
[24] Lerman G M, Stern L, Levy U. Generation and tight focusing of hybridly polarized vector beams[J]. Optics Express, 18, 27650-27657(2010).
[25] Zhang L, Lin F, Qiu X, et al. Full vectorial feature of second-harmonic generation with full Poincaré beams[J]. Chinese Optics Letters, 17, 091901(2019).
[26] Zhang L, Qiu X, Li F, et al. Second harmonic generation with full Poincaré beams[J]. Optics Express, 26, 11678-11684(2018).
[27] Zhang L, Qiu X, Zeng L, et al. Multiple trapping using a focused hybrid vector beam[J]. Chinese Physics B, 28, 094202(2019).
[28] Wei C, Wu D, Liang C, et al. Experimental verification of significant reduction of turbulence-induced scintillation in a full Poincaré beam[J]. Optics Express, 23, 24331-24341(2015).
[29] Cardano F, Karimi E, Marrucci L, et al. Generation and dynamics of optical beams with polarization singularities[J]. Optics Express, 21, 8815-8820(2013).
[30] Shvedov V, Karpinski P, Sheng Y, et al. Visualizing polarization singularities in Bessel Poincaré beams[J]. Optics Express, 23, 12444-12453(2015).
[31] Garcia-Gracia H, Gutiérrez-Vega J C. Polarization singularities in nondiffracting Mathieu-Poincaré beams[J]. Journal of Optics, 18, 014006(2016).
[32] Nye G F. Polarization effects in the diffraction of electromagnetic waves: the role of disclinations[J]. Proceedings of the Royal Society of London Series A, 387, 105-132(1983).
[33] Dennis M R. Polarization singularities in paraxial vector fields: morphology and statistics[J]. Optics Communications, 213, 201-221(2002).
[34] Lopez-Mago D. On the overall polarisation properties of Poincaré beams[J]. Journal of Optics, 21, 115605(2019).
[35] Fu S, Zhai Y, Wang T, et al. Tailoring arbitrary hybrid Poincaré beams through a single hologram[J]. Applied Physics Letters, 111, 211101(2017).
[36] Han L, Qi S, Liu S, et al. Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient[J]. Chinese Physics B, 29, 094203(2020).
[37] Galvez E, Khadka S, Schubert W H, et al. Poincaré-beam patterns produced by nonseparable superpositions of Laguerre-Gauss and polarization modes of light[J]. Applied Optics, 51, 2925-2934(2012).
[38] Lu T, Huang T, Wang J, et al. Generation of flower high-order Poincaré sphere laser beams from a spatial light modulator[J]. Scientific Reports, 6, 39657(2016).
[39] Wang Y, Wang L, Xin Y. Generation of full Poincaré beams on arbitrary order Poincaré sphere[J]. Current Optics and Photonics, 1, 631-636(2017).
[40] Ling X, Yi X, Dai Z, et al. Characterization and manipulation of full Poincaré beams on the hybrid Poincaré sphere[J]. Journal of the Optical Society of America B, 33, 2172-2176(2016).
[41] Li D, Feng S, Nie S, et al. Generation of arbitrary perfect Poincaré beams[J]. Journal of Applied Physics, 125, 073105(2019).
[42] Gu Z, Yin D, Gu F, et al. Generation of concentric perfect Poincaré beams[J]. Scientific Reports, 9, 15301(2019).
[43] Beckley A M, Brown T G, Alonso M A. Full Poincaré beams II: partial polarization[J]. Optics Express, 20, 9357-9362(2012).
[44] Marrucci L, Manzo C, Paparo D. Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation[J]. Applied Physics Letters, 88, 221102(2006).
[45] Liu Z X, Liu Y Y, Ke Y G, et al. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere[J]. Photonics Research, 5, 15-21(2017).
[46] Lou S, Zhou Y, Yuan Y, et al. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere based on liquid crystal device[J]. Optics Express, 27, 8596-8604(2019).
[47] Zhang Y, Chen P, Ge S, et al. Spin-controlled massive channels of hybrid-order Poincare sphere beams[J]. Applied Physics Letters, 117, 081101(2020).
[48] Khajavi B, Galvez E J. Preparation of Poincaré beams with a same-path polarization/spatial-mode interferometer[J]. Optical Engineering, 54, 111305(2015).
[49] Alpmann C, Schlickriede C, Otte E, et al. Dynamic modulation of Poincaré beams[J]. Scientific Reports, 7, 8076(2017).
[50] Otte E, Alpmann C, Denz C. Polarization singularity explosions in tailored light fields[J]. Laser Photonics Reviews, 12, 1700200(2018).
[51] Lerman G M, Levy U. Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm[J]. Optics Letters, 33, 2782-2784(2008).
[52] Wang R, He S, Chen S, et al. Electrically driven generation of arbitrary vector vortex beams on the hybrid-order Poincaré sphere[J]. Optics Letters, 43, 3570-3573(2018).
[53] Lin W B, Ota Y, Arakawa Y, et al. Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers[J]. Physical Review Research, 3, 023055(2021).
[54] Liu M Z, Huo P C, Zhu W Q, et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface[J]. Nature Communications, 12, 2230(2021).
[55] Wang H, Shi L, Lukyanchuk B, et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nature Photonics, 2, 501-505(2008).
[56] Zang X, Bautista G, Turquet L, et al. Efficient hybrid-mode excitation in plasmonic nanoantennas by tightly focused higher-order vector beams[J]. Journal of the Optical Society of America B, 38, 521-529(2021).
[57] Zhu W, Shvedov V, She W, et al. Transverse spin angular momentum of tightly focused full Poincaré beams[J]. Optics Express, 23, 34029-34041(2015).
[58] Man Z, Dou X, Urbach H P. The evolutions of spin density and energy flux of strongly focused standard full Poincaré beams[J]. Optics Communications, 458, 124790(2002).
[59] Man Z, Bai Z, Li J, et al. Focus shaping by tailoring arbitrary hybrid polarization states that have a combination of orthogonal linear polarization bases[J]. Applied Optics, 57, 3047-3055(2018).
[60] Han W, Cheng W, Zhan Q W. Flattop focusing with full Poincaré beams under low numerical aperture illumination[J]. Optics Letters, 36, 1605-1607(2011).
[61] Dai X, Li Y, Liu L. Tight focusing properties of hybrid-order Poincaré sphere beams[J]. Optics Communications, 426, 46-53(2018).
[62] Wang L G. Optical forces on submicron particles induced by full Poincaré beams[J]. Optics Express, 20, 20814-20826(2012).
[63] Xue Y, Wang Y, Zhou S, et al. Focus shaping and optical manipulation using highly focused second-order full Poincaré beam[J]. Journal of the Optical Society of America A, 35, 953-958(2018).
[64] Sanchez M M, Davis J A, Moreno I, et al. Gouy phase effects on propagation of pure and hybrid vector beams[J]. Optics Express, 27, 2374-2386(2019).
[65] Lu X, Wu Z, Zhang W, et al. Polarization singularities and orbital angular momentum sidebands from rotational symmetry broken by the Pockels effect[J]. Scientific Reports, 4, 4865(2014).
[66] Yang C, Zhou Z, Li Y, et al. Nonlinear frequency conversion and manipulation of vector beams in a Sagnac loop[J]. Optics Letters, 44, 219-222(2019).
[67] Wu H, Zhou Z, Gao W, et al. Dynamic tomography of the spin-orbit coupling in nonlinear optics[J]. Physical Review A, 99, 023830(2019).
[68] Wu H, Zhao B, Rosles-Guzmán, et al. Spatial-polarization-independent parametric up-conversion of vectorially structured light[J]. Physical Review Applied, 13, 064041(2020).
[69] Silva N R, Oliveira A G, Arruda M F Z, et al. Stimulated parametric down-conversion with vector vortex beams[J]. Physical Review Applied, 15, 024039(2021).
[70] Wen B, Rui G, He J, et al. Polarization rotation and singularity evolution of fundamental Poincaré beams through anisotropic Kerr nonlinearities[J]. Journal of Optics, 22, 08550(2020).
[71] Yang X, Chen Y, Wang J, et al. Observing quantum coherence induced transparency of hybrid vector beams in atomic vapor[J]. Optics Letters, 44, 2911-2914(2019).
[72] Luo D, Hu H, Pan C, et al. Nonlinear control of polarization rotation of hybrid-order vector vortex beams[J]. Journal of Optics, 22, 115612(2020).
Get Citation
Copy Citation Text
Li Zhang, Xinzhou Liang, Qian Lin, Bingye Cai. Research progress of hybrid vector beams (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210447
Category:
Received: Jul. 3, 2021
Accepted: --
Published Online: Oct. 28, 2021
The Author Email: