Acta Optica Sinica, Volume. 36, Issue 12, 1202001(2016)
High Efficiency Quadrupole Magnetic Trap Transport in Single Chamber Atom Chip System
[1] [1] Chuang H C, Huang C S, Chen H P, et al. The design, fabrication and characterization of a transparent atom chip[J]. Sensors, 2014, 14(6): 10292-10305.
[2] [2] Huet L, Ammar M, Morvan E, et al. Experimental investigation of transparent silicon carbide for atom chips[J]. Applied Physics Letters, 2012, 100(12): 121114.
[3] [3] Feenstra L, Andersson L M, Schmiedmayer J. Microtraps and atom chips: Toolboxes for cold atom physics[J]. General Relativity and Gravitation, 2004, 36(10): 2317-2329.
[4] [4] Reichel J. Microchip traps and Bose-Einstein condensation[J]. Applied Physics B, 2002, 74(6): 469-487.
[5] [5] Dekker N H, Lee C S, Lorent V V, et al. Guiding neutral atoms on a chip[J]. Physical Review Letters, 2000, 84(6): 1124-1127.
[6] [6] H?nsel W, Reichel J, Hommelhoff P, et al. Magnetic conveyor belt for transporting and merging trapped atom clouds[J]. Physical Review Letters, 2001, 86(4): 608-611.
[7] [7] Schumm T, Hofferberth S, Andersson L M, et al. Matter-wave interferometry in a double well on an atom chip[J]. Nature Physics, 2005, 1(1): 57-62.
[8] [8] Reichel J, Hansell W, Hansch T W. Atomic micromanipulation with magnetic surface traps[J]. Physical Review Letters, 1999, 83(17): 3398-3401.
[9] [9] Du S W, Oh E. Three-wire magnetic trap for direct forced evaporative cooling[J]. Physical Review A, 2009, 79(1): 013407.
[10] [10] Hansel W, Hommelhoff P, Hansch T W, et al. Bose-Einstein condensation on a microelectronic chip[J]. Nature, 2001, 413(6855): 498-501.
[11] [11] Ott H, Fortagh J, Schlotterbeck G, et al. Bose-Einstein condensation in a surface microtrap[J]. Physical Review Letters, 2001, 87(23): 230401.
[12] [12] Straatsma C J, Ivory M K, Duggan J, et al. On-chip optical lattice for cold atom experiments[J]. Optics Letters, 2015, 40(14): 3368-3371.
[13] [13] Rushton J A, Aldous M, Himsworth M D. Contributed review: The feasibility of a fully miniaturized magneto-optical trap for portable ultracold quantum technology[J]. Review of Scientific Instruments, 2014, 85(12): 121501.
[14] [14] Wang Y J, Anderson D Z, Bright V M, et al. Atom Michelson interferometer on a chip using a Bose-Einstein condensate[J]. Physical Review Letters, 2005, 94(9): 090405.
[15] [15] Muntinga H, Ahlers H, Krutzik M, et al. Interferometry with Bose-Einstein condensates in microgravity[J]. Physical Review Letters, 2013, 110(9): 093602.
[16] [16] Maineult W, Deutsch C, Gibble K, et al. Spin waves and collisional frequency shifts of a trapped-atom clock[J]. Physical Review Letters, 2012, 109(2): 020407.
[17] [17] Chen Shu, Feng Yanying, Xue Hongbo, et al. Monte Carlo method for simulation and parameter optimization cold atomic beam[J]. Chinese J Lasers, 2014, 41(5): 0518001.
[18] [18] Myatt C J, Newbury N R, Ghrist R W, et al. Multiply loaded magneto-optical trap[J]. Optics Letters, 1996, 21(4): 290-292.
[19] [19] Roberts K O, McKellar T, Fekete J, et al. Steerable optical tweezers for ultracold atom studies[J]. Optics Letters, 2014, 39(7): 2012-2015.
[20] [20] Gustavson T L, Chikkatur A P, Leanhardt A E, et al. Transport of Bose-Einstein condensates with optical tweezers[J]. Physical Review Letters, 2002, 88(2): 020401.
[21] [21] Zhou Qi, Lu Junfa, Pan Xiaoqing, et al. Theoretical and experimental study of a novel combinative triple-well optical trap for triple-species cold atoms or molecules[J]. Acta Optica Sinica, 2014, 34(4): 0402001.
[22] [22] Schmid S, Thalhammer G, Winkler K, et al. Long distance transport of ultracold atoms using a 1D optical lattice[J]. New Journal of Physics, 2006, 8: 159.
[23] [23] Kumar S, Sarkar S, Verma G, et al. Bose-Einstein condensation in an electro-pneumatically transformed quadrupole-Ioffe magnetic trap[J]. New Journal of Physics, 2015, 17(2): 023062.
[24] [24] Lewandowski H J, Harber D M, Whitaker D L, et al. Simplified system for creating a Bose-Einstein condensate[J]. Journal of Low Temperature Physics, 2003, 132(516): 309-367.
[25] [25] Greiner M, Bloch I, H?nsch T W, et al. Magnetic transport of trapped cold atoms over a large distance[J]. Physical Review A, 2001, 63(3): 031401.
[26] [26] Gao K Y, Luo X Y, Jia F D, et al. Ultra-high efficiency magnetic transport of 87Rb atoms in a single chamber Bose-Einstein condensation apparatus[J]. Chinese Physics Letters, 2014, 31(6): 063701.
[27] [27] Horikoshi M, Nakagawa K. Atom chip based fast production of Bose-Einstein condensate[J]. Applied Physics B, 2006, 82(3): 363-366.
[28] [28] Han J S, Xu X P, Zhang H C, et al. Optimal transport of cold atoms by modulating the velocity of traps[J]. Chinese Physics B, 2013, 22(2): 023702.
[29] [29] Chen D, Zhang H, Xu X, et al. Nonadiabatic transport of cold atoms in a magnetic quadrupole potential[J]. Applied Physics Letters, 2010, 96(13): 134103.
[30] [30] Farkas D M, Hudek K M, Salim E A, et al. A compact, transportable, microchip-based system for high repetition rate production of Bose-Einstein condensates[J]. Applied Physics Letters, 2010, 96(9): 093102.
[31] [31] Jian B, van Wijngaarden W A. Double-loop microtrap for ultracold atoms[J]. Journal of the Optical Society of America B, 2013, 30(2): 238-243.
[32] [32] Hommelhoff P, H?nsel W, Steinmetz T, et al. Transporting, splitting and merging of atomic ensemblesin a chip trap[J]. New Journal of Physics, 2005, 7: 3.
[33] [33] Zhang Pengfei, Xu Xinping, Zhang Haichao, et al. UV light-induced atom desorption for magnetic trap in a single vacuum chamber[J]. Acta Physica Sinica, 2007, 56(6): 3205.
Get Citation
Copy Citation Text
Cheng Jun, Xu Xinping, Zhang Jingfang, Chen Yushui, Zhang Haichao, Wang Yuzhu. High Efficiency Quadrupole Magnetic Trap Transport in Single Chamber Atom Chip System[J]. Acta Optica Sinica, 2016, 36(12): 1202001
Category:
Received: Jul. 25, 2016
Accepted: --
Published Online: May. 15, 2020
The Author Email: Haichao Zhang (zhanghc@mail.siom.ac.cn)