Chinese Journal of Lasers, Volume. 51, Issue 4, 0402403(2024)
Hybrid Laser Manufacturing and Applications in Flexible Micro‐Nano Sensors (Invited)
[1] Um S H, Hwang S W, Grigoropoulos C P et al. Recent advances in selective laser-material interaction for biomedical device applications[J]. Applied Physics Reviews, 9, 041302(2022).
[2] Li X X, Guan Y C. Theoretical fundamentals of short pulse laser-metal interaction: a review[J]. Nanotechnology and Precision Engineering, 3, 105-125(2020).
[3] Joe D J, Kim S, Park J H et al. Laser-material interactions for flexible applications[J]. Advanced Materials, 29, 1606586(2017).
[4] Zhang C Y, Zhou W, Geng D et al. Laser direct writing and characterizations of flexible piezoresistive sensors with microstructures[J]. Opto-Electronic Advances, 4, 200061(2021).
[5] Shao C X, Zhao Y, Chen N et al. Application of laser micro-nano-fabrication in sensing field[J]. Chinese Journal of Lasers, 48, 0202014(2021).
[6] Bian J, Zhou L B Y, Wan X D et al. Laser transfer, printing, and assembly techniques for flexible electronics[J]. Advanced Electronic Materials, 5, 1800900(2019).
[7] Zhang Y B, Wang X Y, Yan K et al. Laser micro/nano-structuring pushes forward smart sensing: opportunities and challenges[J]. Advanced Functional Materials, 33, 2211272(2023).
[8] Zhao L L, Liu Z, Chen D et al. Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage[J]. Nano-Micro Letters, 13, 49(2021).
[9] Carvalho A F, Fernandes A J S, Leitão C et al. Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide[J]. Advanced Functional Materials, 28, 1805271(2018).
[10] Kulyk B, Silva B F R, Carvalho A F et al. Laser-induced graphene from paper for mechanical sensing[J]. ACS Applied Materials & Interfaces, 13, 10210-10221(2021).
[11] Le T S D, Park S, An J N et al. Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics[J]. Advanced Functional Materials, 29, 1902771(2019).
[12] Fang L N, Li J C, Zhang J R et al. Femtosecond laser structuring for flexible surface-enhanced Raman spectroscopy substrates[J]. IEEE Photonics Journal, 13, 6800908(2021).
[13] Nag A, Mukhopadhyay S C, Kosel J. Sensing system for salinity testing using laser-induced graphene sensors[J]. Sensors and Actuators A: Physical, 264, 107-116(2017).
[14] Sharma S, Ganeshan S K, Pattnaik P K et al. Laser induced flexible graphene electrodes for electrochemical sensing of hydrazine[J]. Materials Letters, 262, 127150(2020).
[15] Zhang L Q, Wang L, Li J Y et al. Surface engineering of laser-induced graphene enables long-term monitoring of on-body uric acid and pH simultaneously[J]. Nano Letters, 22, 5451-5458(2022).
[16] Puetz P, Behrent A, Baeumner A J et al. Laser-scribed graphene (LSG) as new electrode material for impedance-based cellular assays[J]. Sensors and Actuators B: Chemical, 321, 128443(2020).
[17] Soares R R A, Hjort R G, Pola C C et al. Laser-induced graphene electrochemical immunosensors for rapid and label-free monitoring of Salmonella enterica in chicken broth[J]. ACS Sensors, 5, 1900-1911(2020).
[18] Fenzl C, Nayak P, Hirsch T et al. Laser-scribed graphene electrodes for aptamer-based biosensing[J]. ACS Sensors, 2, 616-620(2017).
[19] Du Q F, Liu L L, Tang R T et al. High-performance flexible pressure sensor based on controllable hierarchical microstructures by laser scribing for wearable electronics[J]. Advanced Materials Technologies, 6, 2100122(2021).
[20] Yang R X, Dutta A, Li B W et al. Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-pyramids[J]. Nature Communications, 14, 2907(2023).
[21] Cheng L, Fang G Q, Wei L et al. Laser-induced graphene strain sensor for conformable lip-reading recognition and human-machine interaction[J]. ACS Applied Nano Materials, 6, 7290-7298(2023).
[22] Chen X, Hou Z R, Li G X et al. A laser-scribed wearable strain sensing system powered by an integrated rechargeable thin-film zinc-air battery for a long-time continuous healthcare monitoring[J]. Nano Energy, 101, 107606(2022).
[23] Agarwala S, Goh G L, Le T S D et al. Wearable bandage-based strain sensor for home healthcare: combining 3D aerosol jet printing and laser sintering[J]. ACS Sensors, 4, 218-226(2019).
[24] Shin J, Jeong B, Kim J et al. Sensitive wearable temperature sensor with seamless monolithic integration[J]. Advanced Materials, 32, e1905527(2020).
[25] Chen R, Luo T, Geng D et al. Facile fabrication of a fast-response flexible temperature sensor via laser reduced graphene oxide for contactless human-machine interface[J]. Carbon, 187, 35-46(2022).
[26] Cui S Y, Lu Y Y, Kong D P et al. Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors[J]. Opto-Electronic Advances, 6, 220172(2023).
[27] Lan L Y, Le X H, Dong H Y et al. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface[J]. Biosensors and Bioelectronics, 165, 112360(2020).
[28] Xu K C, Li Q A, Lu Y Y et al. Laser direct writing of flexible thermal flow sensors[J]. Nano Letters, 23, 10317-10325(2023).
[29] Wang H, Zhao Z F, Liu P P et al. A soft and stretchable electronics using laser-induced graphene on polyimide/PDMS composite substrate[J]. NPJ Flexible Electronics, 6, 26(2022).
[30] Yao Y B, Jiang Z F, Yao J W et al. Self-sealing carbon patterns by one-step direct laser writing and their use in multifunctional wearable sensors[J]. ACS Applied Materials & Interfaces, 12, 50600-50609(2020).
[31] Liu K, Yang C, Zhang S Y et al. Laser direct writing of a multifunctional superhydrophobic composite strain sensor with excellent corrosion resistance and anti-icing/deicing performance[J]. Materials & Design, 218, 110689(2022).
[32] Luo H Y, Lu Y Y, Xu Y H et al. A fully soft, self-powered vibration sensor by laser direct writing[J]. Nano Energy, 103, 107803(2022).
[33] Xu K C, Fujita Y, Lu Y Y et al. A wearable body condition sensor system with wireless feedback alarm functions[J]. Advanced Materials, 33, e2008701(2021).
[34] Saisahas K, Soleh A, Somsiri S et al. Electrochemical sensor for methamphetamine detection using laser-induced porous graphene electrode[J]. Nanomaterials, 12, 73(2021).
[35] Yang Y R, Song Y, Bo X J et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat[J]. Nature Biotechnology, 38, 217-224(2020).
[36] Tu J B, Min J H, Song Y et al. A wireless patch for the monitoring of C-reactive protein in sweat[J]. Nature Biomedical Engineering, 7, 1293-1306(2023).
[37] Yang L, Wang H, Abdullah A M et al. Direct laser writing of the porous graphene foam for multiplexed electrochemical sweat sensors[J]. ACS Applied Materials & Interfaces, 15, 34332-34342(2023).
[38] Yang L, Zheng G H, Cao Y Q et al. Moisture-resistant, stretchable NOx gas sensors based on laser-induced graphene for environmental monitoring and breath analysis[J]. Microsystems & Nanoengineering, 8, 78(2022).
[39] Li D S, Shao Y Z, Zhang Q et al. A flexible virtual sensor array based on laser-induced graphene and MXene for detecting volatile organic compounds in human breath[J]. Analyst, 146, 5704-5713(2021).
[40] Yang J, Zhang K, Yu J J et al. Facile fabrication of robust and reusable PDMS supported graphene dry electrodes for wearable electrocardiogram monitoring[J]. Advanced Materials Technologies, 6, 2100262(2021).
[41] Wei Y H, Li X S, Wang Y F et al. Graphene-based multifunctional textile for sensing and actuating[J]. ACS Nano, 15, 17738-17747(2021).
[42] Zhang Q, Qu M L, Liu X Y et al. Three-in-one portable electronic sensory system based on low-impedance laser-induced graphene on-skin electrode sensors for electrophysiological signal monitoring[J]. Advanced Materials Interfaces, 10, 2201735(2023).
[43] Sun B H, McCay R N, Goswami S et al. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges[J]. Advanced Materials, 30, e1804327(2018).
[44] Tian H, Li X S, Wei Y H et al. Bioinspired dual-channel speech recognition using graphene-based electromyographic and mechanical sensors[J]. Cell Reports Physical Science, 3, 101075(2022).
[45] Ling Y, Pang W B, Li X P et al. Laser-induced graphene for electrothermally controlled, mechanically guided, 3D assembly and human-soft actuators interaction[J]. Advanced Materials, 32, e1908475(2020).
[46] Wang H B, Xiang Z H, Zhao P C et al. Double-sided wearable multifunctional sensing system with anti-interference design for human-ambience interface[J]. ACS Nano, 16, 14679-14692(2022).
[47] Zhang C, Chen H M, Ding X H et al. Human motion-driven self-powered stretchable sensing platform based on laser-induced graphene foams[J]. Applied Physics Reviews, 9, 011413(2022).
[48] Gopalakrishnan S, Sedaghat S, Krishnakumar A et al. Wireless humidity sensor for smart packaging via one-step laser-induced patterning and nanoparticle formation on metallized paper[J]. Advanced Electronic Materials, 8, 2101149(2022).
[49] Lei J C, Zhang Q, Zhao Z Y et al. One-step fabrication of nanocrystalline nanonetwork SnO2 gas sensors by integrated multilaser processing[J]. Advanced Materials Technologies, 5, 2000281(2020).
[50] Gandla S, Chae H, Kwon H J et al. Ultrafast prototyping of large-area stretchable electronic systems by laser ablation technique for controllable robotic arm operations[J]. IEEE Transactions on Industrial Electronics, 69, 4245-4253(2022).
[51] Kim K K, Choi J, Kim J H et al. Evolvable skin electronics by in situ and in operando adaptation[J]. Advanced Functional Materials, 32, 2106329(2022).
[52] Liu S L Z, Yuen M C, White E L et al. Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible electronics[J]. ACS Applied Materials & Interfaces, 10, 28232-28241(2018).
[53] Nam V B, Thi Giang T, Lee D. Laser digital patterning of finely-structured flexible copper electrodes using copper oxide nanoparticle ink produced by a scalable synthesis method[J]. Applied Surface Science, 570, 151179(2021).
[54] Kang B C, Han S Y, Kim J S et al. One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle[J]. The Journal of Physical Chemistry C, 115, 23664-23670(2011).
[55] Nam V B, Shin J, Yoon Y et al. Highly stable Ni-based flexible transparent conducting panels fabricated by laser digital patterning[J]. Advanced Functional Materials, 29, 1806895(2019).
[56] Huang F, Shen L, Zhou S K et al. Flexible broadband photodetector based on laser-induced graphene/CH3NH3PbI3 composite[J]. Optical Materials, 128, 112364(2022).
[57] Qu M L, Tian Y X, Cheng Y B et al. Whole-device mass-producible perovskite photodetector based on laser-induced graphene electrodes[J]. Advanced Optical Materials, 10, 2201741(2022).
[58] Wu C, Wu F M, Hu H Z et al. Work function tunable laser induced graphene electrodes for Schottky type solar-blind photodetectors[J]. Applied Physics Letters, 120, 101102(2022).
[59] Xia S Y, Long Y F, Huang Z Y et al. Laser-induced graphene (LIG)-based pressure sensor and triboelectric nanogenerator towards high-performance self-powered measurement-control combined system[J]. Nano Energy, 96, 107099(2022).
[60] Shi X Y, Zhou F, Peng J X et al. One-step scalable fabrication of graphene-integrated micro-supercapacitors with remarkable flexibility and exceptional performance uniformity[J]. Advanced Functional Materials, 29, 1902860(2019).
[61] Yi J S, Chen J H, Yang Z et al. Facile patterning of laser-induced graphene with tailored Li nucleation kinetics for stable lithium-metal batteries[J]. Advanced Energy Materials, 9, 1901796(2019).
[62] Chen R, Wang J C, Zhang W Z et al. Research progress of laser manufacturing technology for microstructure sensor[J]. Opto-Electronic Engineering, 50, 220041(2023).
[63] Hwang E, Hong J, Yoon J et al. Direct writing of functional layer by selective laser sintering of nanoparticles for emerging applications: a review[J]. Materials, 15, 6006(2022).
[64] Rho Y, Kang K T, Lee D. Highly crystalline Ni/NiO hybrid electrodes processed by inkjet printing and laser-induced reductive sintering under ambient conditions[J]. Nanoscale, 8, 8976-8985(2016).
[65] Kefer S, Bischoff K, Roth G L et al. Tunable bulk polymer planar Bragg gratings electrified via femtosecond laser reductive sintering of CuO nanoparticles[J]. Advanced Optical Materials, 9, 2002203(2021).
[66] Theodorakos I, Zacharatos F, Geremia R et al. Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics[J]. Applied Surface Science, 336, 157-162(2015).
[67] Li X B, Huang J T, Lu J S et al. Fabrication and characterization of SiO2@SiC shell-core nanowire prepared by laser sintering[J]. Journal of Materials Science, 52, 3344-3352(2017).
[68] Li W W, Yang S, Shamim A. Screen printing of silver nanowires: balancing conductivity with transparency while maintaining flexibility and stretchability[J]. NPJ Flexible Electronics, 3, 13(2019).
[69] Spechler J A, Nagamatsu K A, Sturm J C et al. Improved efficiency of hybrid organic photovoltaics by pulsed laser sintering of silver nanowire network transparent electrode[J]. ACS Applied Materials & Interfaces, 7, 10556-10562(2015).
[70] Zhou M X, Zhu W, Yu S Z et al. Selective laser sintering of carbon nanotube-coated thermoplastic polyurethane: mechanical, electrical, and piezoresistive properties[J]. Composites Part C: Open Access, 7, 100212(2022).
[71] Zhuang Y, Guo Y L, Li J et al. Preparation and laser sintering of a thermoplastic polyurethane carbon nanotube composite-based pressure sensor[J]. RSC Advances, 10, 23644-23652(2020).
[72] Mizoshiri M, Kondo Y. Direct writing of Cu-based fine micropatterns using femtosecond laser pulse-induced sintering of Cu2O nanospheres[J]. Japanese Journal of Applied Physics, 58, SDDF05(2019).
[73] Nam V B, Giang T T, Koo S et al. Laser digital patterning of conductive electrodes using metal oxide nanomaterials[J]. Nano Convergence, 7, 23(2020).
[74] Liu S L Z, Yuen M C, Kramer-Bottiglio R. Reconfigurable electronic devices enabled by laser-sintered liquid metal nanoparticles[J]. Flexible and Printed Electronics, 4, 015004(2019).
[75] Suh Y D, Kwon J, Lee J et al. Maskless fabrication of highly robust, flexible transparent Cu conductor by random crack network assisted Cu nanoparticle patterning and laser sintering[J]. Advanced Electronic Materials, 2, 1600277(2016).
[76] Huang Y J, Xie X Z, Li M N et al. Copper circuits fabricated on flexible polymer substrates by a high repetition rate femtosecond laser-induced selective local reduction of copper oxide nanoparticles[J]. Optics Express, 29, 4453-4463(2021).
[77] Mizoshiri M, Ito Y, Arakane S et al. Direct fabrication of Cu/Cu2O composite micro-temperature sensor using femtosecond laser reduction patterning[J]. Japanese Journal of Applied Physics, 55, 06GP05(2016).
[78] Nam V B, Lee D. Evaluation of Ni-based flexible resistance temperature detectors fabricated by laser digital pattering[J]. Nanomaterials, 11, 576(2021).
[79] Ho L D A, Nam V B, Lee D. Flexible Ni/NiOx-based sensor for human breath detection[J]. Materials, 15, 47(2021).
[80] Nam V B, Shin J, Choi A et al. High-temperature, thin, flexible and transparent Ni-based heaters patterned by laser-induced reductive sintering on colorless polyimide[J]. Journal of Materials Chemistry C, 9, 5652-5661(2021).
[81] Kwon J, Cho H, Suh Y D et al. Flexible and transparent Cu electronics by low-temperature acid-assisted laser processing of Cu nanoparticles[J]. Advanced Materials Technologies, 2, 1600222(2017).
[82] Lee D, Paeng D, Park H K et al. Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors[J]. ACS Nano, 8, 9807-9814(2014).
[83] Shen C, Weng P X, Wang Z J et al. Research progress in laser direct writing of flexible circuit[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 51, 084201(2021).
[84] Yamaguchi M, Araga S, Mita M et al. On-demand infrared laser sintering of gold nanoparticle paste for electrical contacts[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 5, 1160-1168(2015).
[85] Chung J, Ko S H, Bieri N R et al. Conductor microstructures by laser curing of printed gold nanoparticle ink[J]. Applied Physics Letters, 84, 801-803(2004).
[86] Shou W, Mahajan B K, Ludwig B et al. Low-cost manufacturing of bioresorbable conductors by evaporation-condensation-mediated laser printing and sintering of Zn nanoparticles[J]. Advanced Materials, 29, 1700172(2017).
[87] Tan H W, An J, Chua C K et al. Metallic nanoparticle inks for 3D printing of electronics[J]. Advanced Electronic Materials, 5, 1800831(2019).
[88] Mu B Y, Wang X P, Zhang X S et al. Laser direct sintering approach for additive manufacturing in flexible electronic[J]. Results in Engineering, 13, 100359(2022).
[89] Hong S, Yeo J, Kim G et al. Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink[J]. ACS Nano, 7, 5024-5031(2013).
[90] Zenou M, Ermak O, Saar A et al. Laser sintering of copper nanoparticles[J]. Journal of Physics D: Applied Physics, 47, 025501(2014).
[91] Cheng C W, Chen J K. Femtosecond laser sintering of copper nanoparticles[J]. Applied Physics A, 122, 289(2016).
[92] Kwon J, Cho H, Eom H et al. Low-temperature oxidation-free selective laser sintering of Cu nanoparticle paste on a polymer substrate for the flexible touch panel applications[J]. ACS Applied Materials & Interfaces, 8, 11575-11582(2016).
[93] Rahman M K, Lu Z, Kwon K S. Green laser sintering of copper oxide (CuO) nano particle (NP) film to form Cu conductive lines[J]. AIP Advances, 8, 095008(2018).
[94] Zhou X W, Guo W, Fu J et al. Laser writing of Cu/CuxO integrated structure on flexible substrate for humidity sensing[J]. Applied Surface Science, 494, 684-690(2019).
[95] Paeng D, Lee D, Yeo J et al. Laser-induced reductive sintering of nickel oxide nanoparticles under ambient conditions[J]. The Journal of Physical Chemistry C, 119, 6363-6372(2015).
[96] Lee H S, Yang M Y. The effect of negative pressure aging on the aggregation of Cu2O nanoparticles and its application to laser induced copper electrode fabrication[J]. Physical Chemistry Chemical Physics: PCCP, 17, 4360-4366(2015).
[97] Lee D, Pan H, Ko S H et al. Non-vacuum, single-step conductive transparent ZnO patterning by ultra-short pulsed laser annealing of solution-deposited nanoparticles[J]. Applied Physics A, 107, 161-171(2012).
[98] Pan H, Misra N, Ko S H et al. Melt-mediated coalescence of solution-deposited ZnO nanoparticles by excimer laser annealing for thin-film transistor fabrication[J]. Applied Physics A, 94, 111-115(2009).
[99] Li W L, Sun Q Q, Li L Y et al. The rise of conductive copper inks: challenges and perspectives[J]. Applied Materials Today, 18, 100451(2020).
[100] Nguyen T B, Nguyen T D, Tran T D et al. Laser-induced synthesis of Au-Ag alloy nanoparticles in polyvinylpyrrolidone (C6H9NO)n solution[J]. Journal of Cluster Science, 26, 1787-1799(2015).
[101] Han S, Hong S, Yeo J et al. Nanorecycling: monolithic integration of copper and copper oxide nanowire network electrode through selective reversible photothermochemical reduction[J]. Advanced Materials, 27, 6397-6403(2015).
[102] Lee H, Yang M Y. Effect of solvent and PVP on electrode conductivity in laser-induced reduction process[J]. Applied Physics A, 119, 317-323(2015).
[103] Yang M, Chon M W, Kim J H et al. Mechanical and environmental durability of roll-to-roll printed silver nanoparticle film using a rapid laser annealing process for flexible electronics[J]. Microelectronics Reliability, 54, 2871-2880(2014).
[104] Ko S H, Chung J, Pan H et al. Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing[J]. Sensors and Actuators A: Physical, 134, 161-168(2007).
[105] Feng S X, Tian Z S, Wang J et al. Laser sintering of Zn microparticles and its application in printable biodegradable electronics[J]. Advanced Electronic Materials, 5, 1800693(2019).
[106] Lu G X, Ni E L, Jiang Y Y et al. Room-temperature liquid metals for flexible electronic devices[J]. Small, e2304147(2023).
[107] Hu G H, Zhu H Y, Guo H R et al. Maskless fabrication of highly conductive and ultrastretchable liquid metal features through selective laser activation[J]. ACS Applied Materials & Interfaces, 15, 28675-28683(2023).
[108] Hu L, Wang L, Ding Y J et al. Manipulation of liquid metals on a graphite surface[J]. Advanced Materials, 28, 9210-9217(2016).
[109] Handschuh-Wang S, Gan T S, Wang T et al. Surface tension of the oxide skin of gallium-based liquid metals[J]. Langmuir, 37, 9017-9025(2021).
[110] Cho C, Shin W, Kim M et al. Monolithically programmed stretchable conductor by laser-induced entanglement of liquid metal and metallic nanowire backbone[J]. Small, 18, e2202841(2022).
[111] You R, Liu Y Q, Hao Y L et al. Laser fabrication of graphene-based flexible electronics[J]. Advanced Materials, 32, 1901981(2020).
[112] Wang H, Zhao Z F, Liu P P et al. Laser-induced graphene based flexible electronic devices[J]. Biosensors, 12, 55(2022).
[113] Lin J, Peng Z W, Liu Y Y et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 5, 5714(2014).
[114] Chyan Y, Ye R Q, Li Y L et al. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food[J]. ACS Nano, 12, 2176-2183(2018).
[115] Ye R Q, James D K, Tour J M. Laser-induced graphene: from discovery to translation[J]. Advanced Materials, 31, 1803621(2019).
[116] Le T S D, Phan H P, Kwon S et al. Recent advances in laser-induced graphene: mechanism, fabrication, properties, and applications in flexible electronics[J]. Advanced Functional Materials, 32, 2205158(2022).
[117] Wang M Q, Yang Y R, Gao W. Laser-engraved graphene for flexible and wearable electronics[J]. Trends in Chemistry, 3, 969-981(2021).
[118] Wan Z F, Nguyen N T, Gao Y S et al. Laser induced graphene for biosensors[J]. Sustainable Materials and Technologies, 25, e00205(2020).
[119] Yu H Y, Gai M X, Liu L et al. Laser-induced direct graphene patterning: from formation mechanism to flexible applications[J]. Soft Science, 3, 4(2023).
[120] Parmeggiani M, Zaccagnini P, Stassi S et al. PDMS/polyimide composite as an elastomeric substrate for multifunctional laser-induced graphene electrodes[J]. ACS Applied Materials & Interfaces, 11, 33221-33230(2019).
[121] Zhang Z, Zhu H, Zhang W J et al. A review of laser-induced graphene: from experimental and theoretical fabrication processes to emerging applications[J]. Carbon, 214, 118356(2023).
[122] Zhang L Q, Zhou Z Q, Hu X S et al. The recent progress of laser-induced graphene based device applications[J]. Journal of Semiconductors, 44, 031701(2023).
[123] Huang L B, Su J J, Song Y et al. Laser-induced graphene: en route to smart sensing[J]. Nano-Micro Letters, 12, 157(2020).
[124] Stanford M G, Yang K C, Chyan Y et al. Laser-induced graphene for flexible and embeddable gas sensors[J]. ACS Nano, 13, 3474-3482(2019).
[125] Zhu J B, Huang X, Song W X. Physical and chemical sensors on the basis of laser-induced graphene: mechanisms, applications, and perspectives[J]. ACS Nano, 15, 18708-18741(2021).
[126] Lu Y Y, Xu K C, Zhang L S et al. Multimodal plant healthcare flexible sensor system[J]. ACS Nano, 14, 10966-10975(2020).
[127] Lu Y Y, Kong D P, Yang G et al. Machine learning-enabled tactile sensor design for dynamic touch decoding[J]. Advanced Science, 10, e2303949(2023).
[128] Chen S W, Cao Z K, Zhou K et al. Screen printing and laser-induced flexible sensors for the simultaneous sensitive detection of uric acid, tyrosine, and ascorbic acid in sweat[J]. The Analyst, 148, 2965-2974(2023).
[129] Peng Y Y, Zhao W W, Ni F et al. Forest-like laser-induced graphene film with ultrahigh solar energy utilization efficiency[J]. ACS Nano, 15, 19490-19502(2021).
[130] Ma W, Zhu J, Wang Z et al. Recent advances in preparation and application of laser-induced graphene in energy storage devices[J]. Materials Today Energy, 18, 100569(2020).
[131] Wan Z F, Chen X, Gu M. Laser scribed graphene for supercapacitors[J]. Opto-Electronic Advances, 4, 200079(2021).
[132] Gandla S, Naqi M, Lee M et al. Highly linear and stable flexible temperature sensors based on laser-induced carbonization of polyimide substrates for personal mobile monitoring[J]. Advanced Materials Technologies, 5, 2000014(2020).
[133] Mudhulu S, Channegowda M, Balaji S et al. Trends in graphene-based E-skin and artificial intelligence for biomedical applications: a review[J]. IEEE Sensors Journal, 23, 18963-18976(2023).
[134] Lu Y Y, Yang G, Wang S Q et al. Stretchable graphene-hydrogel interfaces for wearable and implantable bioelectronics[J]. Nature Electronics, 7, 51-65(2024).
[135] Yang L, Ji H D, Meng C Z et al. Intrinsically breathable and flexible NO2 gas sensors produced by laser direct writing of self-assembled block copolymers[J]. ACS Applied Materials & Interfaces, 14, 17818-17825(2022).
[136] Wang H M, Wang H M, Wang Y L et al. Laser writing of Janus graphene/Kevlar textile for intelligent protective clothing[J]. ACS Nano, 14, 3219-3226(2020).
[137] Yang W W, Zhao W, Li Q S et al. Fabrication of smart components by 3D printing and laser-scribing technologies[J]. ACS Applied Materials & Interfaces, 12, 3928-3935(2020).
[138] Nam H K, Le T S D, Yang D et al. Smart wooden home enabled by direct-written laser-induced graphene[J]. Advanced Materials Technologies, 8, 2201952(2023).
[139] Jung Y, Min J, Choi J et al. Smart paper electronics by laser-induced graphene for biodegradable real-time food spoilage monitoring[J]. Applied Materials Today, 29, 101589(2022).
[140] Zang X N, Shen C W, Chu Y et al. Laser-induced molybdenum carbide-graphene composites for 3D foldable paper electronics[J]. Advanced Materials, 30, e1800062(2018).
[141] Cantarella G, Madagalam M, Merino I et al. Laser-induced, green and biocompatible paper-based devices for circular electronics[J]. Advanced Functional Materials, 33, 2210422(2023).
[142] Singh S P, Li Y L, Zhang J B et al. Sulfur-doped laser-induced porous graphene derived from polysulfone-class polymers and membranes[J]. ACS Nano, 12, 289-297(2018).
[143] Wang W, Liu Y Q, Liu Y et al. Direct laser writing of superhydrophobic PDMS elastomers for controllable manipulation via marangoni effect[J]. Advanced Functional Materials, 27, 1702946(2017).
[144] Zhang Z C, Song M M, Hao J X et al. Visible light laser-induced graphene from phenolic resin: a new approach for directly writing graphene-based electrochemical devices on various substrates[J]. Carbon, 127, 287-296(2018).
[145] Zhang C, Peng Z X, Huang C L et al. High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems[J]. Nano Energy, 81, 105609(2021).
[146] Ye R Q, Chyan Y, Zhang J B et al. Laser-induced graphene formation on wood[J]. Advanced Materials, 29, 1702211(2017).
[147] Kim Y J, Le T S D, Nam H K et al. Wood-based flexible graphene thermistor with an ultra-high sensitivity enabled by ultraviolet femtosecond laser pulses[J]. CIRP Annals, 70, 443-446(2021).
[148] Zheng B J D, Zhao G G, Yan Z et al. Direct freeform laser fabrication of 3D conformable electronics[J]. Advanced Functional Materials, 33, 2210084(2023).
[149] Le T S D, Lee Y A, Nam H K et al. Green flexible graphene-inorganic-hybrid micro-supercapacitors made of fallen leaves enabled by ultrafast laser pulses[J]. Advanced Functional Materials, 32, 2107768(2022).
[150] Kulyk B, Matos M, Silva B F R et al. Conversion of paper and xylan into laser-induced graphene for environmentally friendly sensors[J]. Diamond and Related Materials, 123, 108855(2022).
[151] Kulyk B, Silva B F R, Carvalho A F et al. Laser-induced graphene from paper by ultraviolet irradiation: humidity and temperature sensors[J]. Advanced Materials Technologies, 7, 2101311(2022).
[152] Zhu C G, Zhao D M, Wang K D et al. Direct laser writing of graphene films from a polyether ether ketone precursor[J]. Journal of Materials Science, 54, 4192-4201(2019).
[153] Song Y P, Zhang J X, Li N et al. Design of a high performance electrode composed of porous nickel-cobalt layered double hydroxide nanosheets supported on vertical graphene fibers for flexible supercapacitors[J]. New Journal of Chemistry, 44, 6623-6634(2020).
[154] Zaccagnini P, Ballin C, Fontana M et al. Laser-induced graphenization of PDMS as flexible electrode for microsupercapacitors[J]. Advanced Materials Interfaces, 8, 2101046(2021).
[155] Yang D, Nam H K, Le T S D et al. Multimodal E-textile enabled by one-step maskless patterning of femtosecond-laser-induced graphene on nonwoven, knit, and woven textiles[J]. ACS Nano, 17, 18893-18904(2023).
[156] Li Z H, Lu L S, Xie Y X et al. Preparation of laser-induced graphene fabric from silk and its application examples for flexible sensor[J]. Advanced Engineering Materials, 23, 2100195(2021).
[157] Wang G Y, Tao L Q, Peng Z R et al. Nomex paper-based double-sided laser-induced graphene for multifunctional human-machine interfaces[J]. Carbon, 193, 68-76(2022).
[158] Yang Q Z, Cao L, Li S et al. Upgrading pomelo peels into laser-induced graphene for multifunctional sensors[J]. Journal of Analytical and Applied Pyrolysis, 173, 106074(2023).
[159] Yue Y, Li X Y, Zhao Z F et al. Stretchable flexible sensors for smart tires based on laser-induced graphene technology[J]. Soft Science, 3, 13(2023).
[160] Sun X Z, Liu X J, Li F. Sulfur-doped laser-induced graphene derived from polyethersulfone and lignin hybrid for all-solid-state supercapacitor[J]. Applied Surface Science, 551, 149438(2021).
[161] Thakur A K, Mahbub H, Nowrin F H et al. Highly robust laser-induced graphene (LIG) ultrafiltration membrane with a stable microporous structure[J]. ACS Applied Materials & Interfaces, 14, 46884-46895(2022).
[162] Liu J B, Zhang L J, Yang C et al. Preparation of multifunctional porous carbon electrodes through direct laser writing on a phenolic resin film[J]. Journal of Materials Chemistry A, 7, 21168-21175(2019).
[163] Beckham J L, Li J T, Stanford M G et al. High-resolution laser-induced graphene from photoresist[J]. ACS Nano, 15, 8976-8983(2021).
[164] Hu X J, Huang J C, Wei Y Z et al. Laser direct-write sensors on carbon-fiber-reinforced poly-ether-ether-ketone for smart orthopedic implants[J]. Advanced Science, 9, e2105499(2022).
[165] Dreimol C H, Guo H Z, Ritter M et al. Sustainable wood electronics by iron-catalyzed laser-induced graphitization for large-scale applications[J]. Nature Communications, 13, 3680(2022).
[166] Jiang S L, Chen Q, Lin J B et al. Thermal stress-induced fabrication of carbon micro/nanostructures and the application in high-performance enzyme-free glucose sensors[J]. Sensors and Actuators B: Chemical, 345, 130364(2021).
[167] Min K, Lim J, Lim J H et al. Fabrication of perforated PDMS microchannel by successive laser pyrolysis[J]. Materials, 14, 7275(2021).
[168] Shin J, Ko J, Jeong S et al. Monolithic digital patterning of polydimethylsiloxane with successive laser pyrolysis[J]. Nature Materials, 20, 100-107(2021).
[169] Jiang Y T, Wang Y, Wu H T et al. Laser-etched stretchable graphene-polymer composite array for sensitive strain and viscosity sensors[J]. Nano-Micro Letters, 11, 99(2019).
[170] Yu J, Wu J G, Yang H et al. Extremely sensitive SERS sensors based on a femtosecond laser-fabricated superhydrophobic /-philic microporous platform[J]. ACS Applied Materials & Interfaces, 14, 43877-43885(2022).
[171] Khew S Y, Tan C F, Yan H P et al. Nanosecond laser ablation for enhanced adhesion of CuO nanowires on copper substrate and its application for oil-water separation[J]. Applied Surface Science, 465, 995-1002(2019).
[172] Yang H, Xu K C, Xu C W et al. Femtosecond laser fabricated elastomeric superhydrophobic surface with stretching-enhanced water repellency[J]. Nanoscale Research Letters, 14, 333(2019).
[173] Pan R, Zhang H J, Zhong M L. Triple-scale superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication[J]. ACS Applied Materials & Interfaces, 13, 1743-1753(2021).
[174] Yu J, Yang H, Wu J G et al. Ultrafast laser fabrication of surface-enhanced Raman scattering sensors[J]. Opto-Electronic Engineering, 50, 220333(2023).
[175] Xu K C, Yan H P, Tan C F et al. Hedgehog inspired CuO nanowires/Cu2O composites for broadband visible-light-driven recyclable surface enhanced Raman scattering[J]. Advanced Optical Materials, 6, 1701167(2018).
[176] Xu K C, Zhang C T, Zhou R et al. Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering[J]. Optics Express, 24, 10352-10358(2016).
[177] Paeng D, Yoo J H, Yeo J et al. Low-cost facile fabrication of flexible transparent copper electrodes by nanosecond laser ablation[J]. Advanced Materials, 27, 2762-2767(2015).
[178] Araromi O A, Rosset S, Shea H R. High-resolution, large-area fabrication of compliant electrodes via laser ablation for robust, stretchable dielectric elastomer actuators and sensors[J]. ACS Applied Materials & Interfaces, 7, 18046-18053(2015).
[179] Wang L Z, Tian Z, Jiang G C et al. Spontaneous dewetting transitions of droplets during icing & melting cycle[J]. Nature Communications, 13, 378(2022).
[180] Huang J X, Xu K, Xu S L et al. Self-aligned laser-induced periodic surface structures for large-area controllable nanopatterning[J]. Laser & Photonics Reviews, 16, 2200093(2022).
[181] Kawabata S, Bai S, Obata K et al. Two-dimensional laser-induced periodic surface structures formed on crystalline silicon by GHz burst mode femtosecond laser pulses[J]. International Journal of Extreme Manufacturing, 5, 015004(2023).
[182] Kobayashi T, Yan J W. Generating nanodot structures on stainless-steel surfaces by cross scanning of a picosecond pulsed laser[J]. Nanomanufacturing and Metrology, 3, 105-111(2020).
[183] Huang J, Liu Y, Jin S J et al. Uniformity control of laser-induced periodic surface structures[J]. Frontiers in Physics, 10, 932284(2022).
[184] Vorobyev A Y, Guo C L. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser & Photonics Reviews, 7, 385-407(2013).
[185] Florian C, Skoulas E, Puerto D et al. Controlling the wettability of steel surfaces processed with femtosecond laser pulses[J]. ACS Applied Materials & Interfaces, 10, 36564-36571(2018).
[186] Cao W, Jiang L, Hu J et al. Optical field enhancement in Au nanoparticle-decorated nanorod arrays prepared by femtosecond laser and their tunable surface-enhanced Raman scattering applications[J]. ACS Applied Materials & Interfaces, 10, 1297-1305(2018).
[187] Jalil S A, Lai B, ElKabbash M et al. Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices[J]. Light: Science & Applications, 9, 14(2020).
[188] Vercillo V, Tonnicchia S, Romano J M et al. Design rules for laser-treated icephobic metallic surfaces for aeronautic applications[J]. Advanced Functional Materials, 30, 1910268(2020).
[189] Martínez-Tong D E, Rodríguez-Rodríguez Á, Nogales A et al. Laser fabrication of polymer ferroelectric nanostructures for nonvolatile organic memory devices[J]. ACS Applied Materials & Interfaces, 7, 19611-19618(2015).
[190] Cerkauskaite A, Drevinskas R, Solodar A et al. Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring[J]. ACS Photonics, 4, 2944-2951(2017).
[191] Huang J, Jiang L, Li X W et al. Controllable photonic structures on silicon-on-insulator devices fabricated using femtosecond laser lithography[J]. ACS Applied Materials & Interfaces, 13, 43622-43631(2021).
[192] Nag A, Mukhopadhyay S C, Kosel J. Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring[J]. Sensors and Actuators A: Physical, 251, 148-155(2016).
[193] Nag A, Mukhopadhyay S C, Kosel J. Tactile sensing from laser-ablated metallized PET films[J]. IEEE Sensors Journal, 17, 7-13(2017).
[194] Wu C Y, Zhang T, Huang Y et al. PI film laser micro-cutting for quantitative manufacturing of contact spacer in flexible tactile sensor[J]. Micromachines, 12, 908(2021).
[195] Mu B, Dong Y, Qian J et al. Hydrogel coating flexible pH sensor system for fish spoilage monitoring[J]. Materials Today Chemistry, 26, 101183(2022).
[196] Wang N, Liu J Z, Zhao Y et al. Laser-cutting fabrication of MXene-based flexible micro-supercapacitors with high areal capacitance[J]. ChemNanoMat, 5, 658-665(2019).
[197] Lee D, Patwa R, Herfurth H et al. High speed remote laser cutting of electrodes for lithium-ion batteries: anode[J]. Journal of Power Sources, 240, 368-380(2013).
[198] Han T, Nag A, Afsarimanesh N et al. Laser-assisted printed flexible sensors: a review[J]. Sensors, 19, 1462(2019).
[199] Won P, Park J J, Lee T et al. Stretchable and transparent kirigami conductor of nanowire percolation network for electronic skin applications[J]. Nano Letters, 19, 6087-6096(2019).
[200] Xu K C, Lu Y Y, Honda S et al. Highly stable kirigami-structured stretchable strain sensors for perdurable wearable electronics[J]. Journal of Materials Chemistry C, 7, 9609-9617(2019).
[201] Kanao K, Harada S, Yamamoto Y et al. Highly selective flexible tactile strain and temperature sensors against substrate bending for an artificial skin[J]. RSC Advances, 5, 30170-30174(2015).
[202] Fang X L, Tan J P, Gao Y et al. High-performance wearable strain sensors based on fragmented carbonized melamine sponges for human motion detection[J]. Nanoscale, 9, 17948-17956(2017).
[203] Gao Y, Lu C, Yu G H et al. Laser micro-structured pressure sensor with modulated sensitivity for electronic skins[J]. Nanotechnology, 30, 325502(2019).
[204] Fan X, Wang N X, Yan F et al. A transfer-printed, stretchable, and reliable strain sensor using PEDOT∶PSS/Ag NW hybrid films embedded into elastomers[J]. Advanced Materials Technologies, 3, 1800030(2018).
[205] Kim K K, Ha I, Kim M et al. A deep-learned skin sensor decoding the epicentral human motions[J]. Nature Communications, 11, 2149(2020).
[206] Li Y H, Long J Y, Chen Y et al. Crosstalk-free, high-resolution pressure sensor arrays enabled by high-throughput laser manufacturing[J]. Advanced Materials, 34, e2200517(2022).
[207] Huang Y, Fan X Y, Chen S C et al. Emerging technologies of flexible pressure sensors: materials, modeling, devices, and manufacturing[J]. Advanced Functional Materials, 29, 1808509(2019).
[208] Xu F L, Li X Y, Shi Y et al. Recent developments for flexible pressure sensors: a review[J]. Micromachines, 9, 580(2018).
[209] Zhang C J, Li Z K, Li H Y et al. Femtosecond laser-induced supermetalphobicity for design and fabrication of flexible tactile electronic skin sensor[J]. ACS Applied Materials & Interfaces, 14, 38328-38338(2022).
[210] Lou Y, Liu H Z, Zhang J Y. Liquid metals in plastics for super-toughness and high-performance force sensors[J]. Chemical Engineering Journal, 399, 125732(2020).
[211] Zhang C, Liu S Y, Huang X et al. A stretchable dual-mode sensor array for multifunctional robotic electronic skin[J]. Nano Energy, 62, 164-170(2019).
[212] Zhou X Y, Zhang R C, Li L J et al. A liquid metal based capacitive soft pressure microsensor[J]. Lab on a Chip, 19, 807-814(2019).
[213] Kim K, Choi J, Jeong Y et al. Highly sensitive and wearable liquid metal-based pressure sensor for health monitoring applications: integration of a 3D-printed microbump array with the microchannel[J]. Advanced Healthcare Materials, 8, e1900978(2019).
[214] Liao M H, Liao H, Ye J J et al. Polyvinyl alcohol-stabilized liquid metal hydrogel for wearable transient epidermal sensors[J]. ACS Applied Materials & Interfaces, 11, 47358-47364(2019).
[215] Zhang Y Q, Liu S D, Miao Y H et al. Highly stretchable and sensitive pressure sensor array based on icicle-shaped liquid metal film electrodes[J]. ACS Applied Materials & Interfaces, 12, 27961-27970(2020).
[216] Lei D D, Zhang Q X, Liu N S et al. Self-powered graphene oxide humidity sensor based on potentiometric humidity transduction mechanism[J]. Advanced Functional Materials, 32, 2107330(2022).
[217] Rana S M S, Zahed M A, Rahman M T et al. Cobalt-nanoporous carbon functionalized nanocomposite-based triboelectric nanogenerator for contactless and sustainable self-powered sensor systems[J]. Advanced Functional Materials, 31, 2105110(2021).
[218] Lu L J, Jiang C P, Hu G S et al. Flexible noncontact sensing for human-machine interaction[J]. Advanced Materials, 33, 2100218(2021).
[219] Sempionatto J R, Lasalde-Ramírez J A, Mahato K et al. Wearable chemical sensors for biomarker discovery in the omics era[J]. Nature Reviews Chemistry, 6, 899-915(2022).
[220] Xu K C, Lu Y Y, Takei K. Multifunctional skin-inspired flexible sensor systems for wearable electronics[J]. Advanced Materials Technologies, 4, 1800628(2019).
[221] Chen B L, Johnson Z T, Sanborn D et al. Tuning the structure, conductivity, and wettability of laser-induced graphene for multiplexed open microfluidic environmental biosensing and energy storage devices[J]. ACS Nano, 16, 15-28(2022).
[222] Qian B, Fan H R, Zhou W. Laser-localized hydrothermal synthesis of flexible ZnO gas sensor for room-temperature detection of nitrogen dioxide[J]. Journal of Materials Science: Materials in Electronics, 33, 8086-8095(2022).
[223] Afshar M, Preiß E M, Sauerwald T et al. Indium-tin-oxide single-nanowire gas sensor fabricated via laser writing and subsequent etching[J]. Sensors and Actuators B: Chemical, 215, 525-535(2015).
[224] Ueda T, Defferriere T, Hyodo T et al. Nanostructured Pr-doped Ceria (PCO) thin films as sensing electrodes in solid-electrolyte type gas sensors with enhanced toluene sensitivity[J]. Sensors and Actuators B: Chemical, 317, 128037(2020).
[225] Yang D, Kim D, Ko S H et al. Focused energy field method for the localized synthesis and direct integration of 1D nanomaterials on microelectronic devices[J]. Advanced Materials, 27, 1207-1215(2015).
[226] He J Q, Lu C H, Jiang H B et al. Scalable production of high-performing woven lithium-ion fibre batteries[J]. Nature, 597, 57-63(2021).
[227] Kwon K, Kim J U, Deng Y J et al. An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time[J]. Nature Electronics, 4, 302-312(2021).
[228] Wang L, Lu J, Li Q M et al. A core-sheath sensing yarn-based electrochemical fabric system for powerful sweat capture and stable sensing[J]. Advanced Functional Materials, 32, 2200922(2022).
[229] Heng W Z, Yang G, Kim W S et al. Emerging wearable flexible sensors for sweat analysis[J]. Bio-Design and Manufacturing, 5, 64-84(2022).
[230] Bauer M, Wunderlich L, Weinzierl F et al. Electrochemical multi-analyte point-of-care perspiration sensors using on-chip three-dimensional graphene electrodes[J]. Analytical and Bioanalytical Chemistry, 413, 763-777(2021).
[231] Wu H, Yang G G, Zhu K H et al. Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human-machine interfaces[J]. Advanced Science, 8, 2001938(2020).
[232] Ullah H, Wahab M A, Will G et al. Recent advances in stretchable and wearable capacitive electrophysiological sensors for long-term health monitoring[J]. Biosensors, 12, 630(2022).
[233] Ha M, Lim S, Ko H. Wearable and flexible sensors for user-interactive health-monitoring devices[J]. Journal of Materials Chemistry B, 6, 4043-4064(2018).
[234] Imani S, Bandodkar A J, Mohan A M V et al. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring[J]. Nature Communications, 7, 11650(2016).
[235] Miyamoto A, Lee S, Cooray N F et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes[J]. Nature Nanotechnology, 12, 907-913(2017).
[236] Chen Y, Lu B W, Chen Y H et al. Breathable and stretchable temperature sensors inspired by skin[J]. Scientific Reports, 5, 11505(2015).
[237] Chae H, Kwon H J, Kim Y K et al. Laser-processed nature-inspired deformable structures for breathable and reusable electrophysiological sensors toward controllable home electronic appliances and psychophysiological stress monitoring[J]. ACS Applied Materials & Interfaces, 11, 28387-28396(2019).
[238] Jeong S H, Zhang S, Hjort K et al. PDMS-based elastomer tuned soft, stretchable, and sticky for epidermal electronics[J]. Advanced Materials, 28, 5830-5836(2016).
[239] Jang K I, Han S Y, Xu S et al. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring[J]. Nature Communications, 5, 4779(2014).
[240] Lee W W, Tan Y J, Yao H C et al. A neuro-inspired artificial peripheral nervous system for scalable electronic skins[J]. Science Robotics, 4, eaax2198(2019).
[241] Artemiadis P K, Kyriakopoulos K J. An EMG-based robot control scheme robust to time-varying EMG signal features[J]. IEEE Transactions on Information Technology in Biomedicine, 14, 582-588(2010).
[242] Acar G, Ozturk O, Golparvar A J et al. Wearable and flexible textile electrodes for biopotential signal monitoring: a review[J]. Electronics, 8, 479(2019).
[243] Guo L, Sandsjö L, Ortiz-Catalan M et al. Systematic review of textile-based electrodes for long-term and continuous surface electromyography recording[J]. Textile Research Journal, 90, 227-244(2020).
[244] Xu P J, Zhang H, Tao X M. Textile-structured electrodes for electrocardiogram[J]. Textile Progress, 40, 183-213(2008).
[245] Jeong H, Feng J R, Kim J. 2.5D laser-cutting-based customized fabrication of long-term wearable textile sEMG sensor: from design to intention recognition[J]. IEEE Robotics and Automation Letters, 7, 10367-10374(2022).
[246] Xu K C, Lu Y Y, Takei K. Flexible hybrid sensor systems with feedback functions[J]. Advanced Functional Materials, 31, 2007436(2021).
[247] Babatain W, Buttner U, El-Atab N et al. Graphene and liquid metal integrated multifunctional wearable platform for monitoring motion and human-machine interfacing[J]. ACS Nano, 16, 20305-20317(2022).
[248] Ham J, Han A K, Cutkosky M R et al. UV-laser-machined stretchable multi-modal sensor network for soft robot interaction[J]. NPJ Flexible Electronics, 6, 94(2022).
[249] Ouyang H, Tian J J, Sun G L et al. Self-powered pulse sensor for antidiastole of cardiovascular disease[J]. Advanced Materials, 29, 1703456(2017).
[250] Park S, Heo S W, Lee W et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics[J]. Nature, 561, 516-521(2018).
[251] Kim J, Banks A, Xie Z Q et al. Miniaturized flexible electronic systems with wireless power and near-field communication capabilities[J]. Advanced Functional Materials, 25, 4761-4767(2015).
[252] Casula G, Montisci G. A design rule to reduce the human body effect on wearable PIFA antennas[J]. Electronics, 8, 244(2019).
[253] Kumar A, Badhai R K, Suraj P. Design of a printed symmetrical CPW-fed monopole antenna for on-body medical diagnosis applications[J]. Journal of Computational Electronics, 17, 1741-1747(2018).
[254] Shintake J, Cacucciolo V, Floreano D et al. Soft robotic grippers[J]. Advanced Materials, 30, e1707035(2018).
[255] Bartlett N W, Tolley M T, Overvelde J T B et al. A 3D-printed, functionally graded soft robot powered by combustion[J]. Science, 349, 161-165(2015).
[256] Terryn S, Brancart J, Lefeber D et al. Self-healing soft pneumatic robots[J]. Science Robotics, 2, eaan4268(2017).
[257] Gao Y, Li Q, Wu R Y et al. Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer toward electronic skins[J]. Advanced Functional Materials, 29, 1806786(2019).
[258] Yu X G, Xie Z Q, Yu Y et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality[J]. Nature, 575, 473-479(2019).
[259] Nakata S, Shiomi M, Fujita Y et al. A wearable pH sensor with high sensitivity based on a flexible charge-coupled device[J]. Nature Electronics, 1, 596-603(2018).
[260] Nyein H Y Y, Gao W, Shahpar Z et al. A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH[J]. ACS Nano, 10, 7216-7224(2016).
[261] Gao W, Emaminejad S, Nyein H Y Y et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature, 529, 509-514(2016).
[262] Wakabayashi S, Arie T, Akita S et al. A multitasking flexible sensor via reservoir computing[J]. Advanced Materials, 34, e2201663(2022).
Get Citation
Copy Citation Text
Zimo Cai, Cuifang Kuang, Huayong Yang, Minghui Hong, Kaichen Xu. Hybrid Laser Manufacturing and Applications in Flexible Micro‐Nano Sensors (Invited)[J]. Chinese Journal of Lasers, 2024, 51(4): 0402403
Category: Laser Micro-Nano Manufacturing
Received: Nov. 7, 2023
Accepted: Jan. 2, 2024
Published Online: Feb. 19, 2024
The Author Email: Xu Kaichen (xukc@zju.edu.cn)
CSTR:32183.14.CJL231372