Chinese Journal of Lasers, Volume. 50, Issue 22, 2201002(2023)

Ti∶Sapphire Femtosecond Laser Oscillator with power of 4.1 W, pulse width of 48 fs, and repetition rate of 74 MHz

Zirun Liu1,2,3, Xingjin Chen1,2,3, and Nan Wang1,2,3、*
Author Affiliations
  • 1College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
  • 2Shenzhen Key Laboratory of Laser Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
  • 3Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education, Shenzhen University, Shenzhen 518060, Guangdong, China
  • show less
    References(35)

    [1] Vorobyev A Y, Guo C L. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser & Photonics Reviews, 7, 385-407(2013).

    [2] Li L Q, Kong W J, Chen F. Femtosecond laser-inscribed optical waveguides in dielectric crystals: a concise review and recent advances[J]. Advanced Photonics, 4, 024002(2022).

    [3] Yu X H, Qi D F, Zhou W J et al. Fabrication of periodic nanostructures on the surface of chalcogenide glass using ultrafast laser[J]. Laser & Optoelectronics Progress, 59, 1516019(2022).

    [4] Li S Q, Geng J X, Li Y P et al. New advances in biomedical applications of multiphoton imaging technology[J]. Acta Physica Sinica, 69, 228702(2020).

    [5] Chung S H, Mazur E. Surgical applications of femtosecond lasers[J]. Journal of Biophotonics, 2, 557-572(2009).

    [6] Pupeza I, Zhang C K, Högner M et al. Extreme-ultraviolet frequency combs for precision metrology and attosecond science[J]. Nature Photonics, 15, 175-186(2021).

    [7] Zewail A H. Femtochemistry:   atomic-scale dynamics of the chemical bond[J]. The Journal of Physical Chemistry A, 104, 5660-5694(2000).

    [8] Andersen T V, Thogersen J, Keiding S R et al. High-power intracavity frequency doubling of a Ti∶sapphire femtosecond oscillator[J]. Applied Physics B, 76, 639-644(2003).

    [9] Cheng G H, Wang Y S, Yu L J et al. High efficient second harmonic at 416 nm and fourth harmonic generation at 208 nm in compacted all-solid-state Ti∶sapphire laser[J]. Chinese Journal of Lasers, 31, 769-772(2004).

    [10] Hada A M, Craciun A M, Astilean S. Gold nanoclusters performing as contrast agents for non-invasive imaging of tissue-like phantoms via two-photon excited fluorescence lifetime imaging[J]. The Analyst, 146, 7126-7130(2021).

    [11] Zhu G P, Zhu J, Xu C X et al. Multi-photon induced ultraviolet emission from hexagram-shaped ZnO nanorods[J]. Applied Physics A, 95, 381-385(2009).

    [12] Jayabalan J, Ananthakumar S, Khan S et al. Multi-photon induced photoluminescence in TGA capped CdTe nanoparticles[J]. Asian Journal of Chemistry, 25, S42-S44(2013).

    [13] Wu T F, Zhou C H, Jiang L X et al. Ultrafast dynamics of BixSb1-x film studied by femtosecond pump-probe technique[J]. Optics Communications, 283, 4383-4386(2010).

    [14] Liu J R, Chen X Z, Yao Z H et al. Ultrafast photoexcitation dynamics of ZnTe crystals by femtosecond optical pump-probe and terahertz emission spectroscopy[J]. Microwave and Optical Technology Letters, 62, 2656-2661(2020).

    [15] Li G F, Zhou W, Zhang W J et al. Pump fluence dependence of ultrafast carrier dynamics in InSb measured by optical pump-terahertz probe spectroscopy[J]. Applied Optics, 57, 9729-9734(2018).

    [16] Xu Y, Leng Y X, Lin L H et al. Amplified spontaneous emission contrast of CPA laser[J]. Chinese Optics Letters, 8, 123-125(2010).

    [17] Keppler S, Sävert A, Körner J et al. The generation of amplified spontaneous emission in high-power CPA laser systems[J]. Laser & Photonics Reviews, 10, 264-277(2016).

    [18] Itatani J, Faure J, Nantel M et al. Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection[J]. Optics Communications, 148, 70-74(1998).

    [19] Spence D E, Kean P N, Sibbett W. 60-fsec pulse generation from a self-mode-locked Ti∶sapphire laser[J]. Optics Letters, 16, 42-44(1991).

    [20] Huang C P, Asaki M T, Backus S et al. 17-fs pulses from a self-mode-locked Ti∶sapphire laser[J]. Optics Letters, 17, 1289-1291(1992).

    [21] Proctor B, Wise F. Generation of 13-fs pulses from a mode‐locked Ti∶Al2O3 laser with reduced third-order dispersion[J]. Applied Physics Letters, 62, 470-472(1993).

    [22] Xu L, Tempea G, Poppe A et al. High-power sub-10-fs Ti∶sapphire oscillators[J]. Applied Physics B, 65, 151-159(1997).

    [23] Ell R, Morgner U, Kärtner F X et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti∶sapphire laser[J]. Optics Letters, 26, 373-375(2001).

    [24] Liu Z L, Izumida S, Ono S et al. High-repetition-rate, high-average-power, mode-locked Ti∶sapphire laser with an intracavity continuous-wave amplification scheme[J]. Applied Physics Letters, 74, 3622-3623(1999).

    [25] Naumov S, Fernandez A, Graf R et al. Approaching the microjoule frontier with femtosecond laser oscillators[J]. New Journal of Physics, 7, 216(2005).

    [26] Dewald S, Lang T, Schröter C D et al. Ionization of noble gases with pulses directly from a laser oscillator[J]. Optics Letters, 31, 2072-2074(2006).

    [27] Takano T, Ogawa H, Ohae C et al. 10 W injection-locked single-frequency continuous-wave titanium: sapphire laser[J]. Optics Express, 29, 6927-6934(2021).

    [30] Shang L J. Cavity mode matching analyses of end-pumped solid-state lasers[J]. Acta Physica Sinica, 52, 1408-1411(2003).

    [31] Yefet S, Pe'er A. A review of cavity design for Kerr lens mode-locked solid-state lasers[J]. Applied Sciences, 3, 694-724(2013).

    [32] Ling W J. Ultrashort laser pulses generate and amplify related physical techniques and frequency transformations[D], 28-34(2003).

    [33] Zhong X. Nonlinear frequency conversion of femtosecond pulses[D], 41-46(2010).

    [34] Song D H, Seo H S. Spectrally combined three-diode-pumped compact femtosecond Ti∶sapphire laser exceeding 1 W mode-locked power[J]. Optics Express, 29, 32649-32657(2021).

    [35] Liu H, Wang G Y, Jiang J W et al. Sub-10-fs pulse generation from a blue laser-diode-pumped Ti: sapphire oscillator[J]. Chinese Optics Letters, 18, 071402(2020).

    [36] Hao J J, Liu H Y, Chen H S et al. Progress in Kerr-lens mode-locked thin disk laser oscillators[J]. Chinese Journal of Lasers, 49, 1201002(2022).

    [37] Ma J, Wang J, Shen D Y et al. Generation of sub-100-fs pulses from a diode-pumped Yb∶Y3ScAl4O12 ceramic laser[J]. Chinese Optics Letters, 15, 121403(2017).

    Tools

    Get Citation

    Copy Citation Text

    Zirun Liu, Xingjin Chen, Nan Wang. Ti∶Sapphire Femtosecond Laser Oscillator with power of 4.1 W, pulse width of 48 fs, and repetition rate of 74 MHz[J]. Chinese Journal of Lasers, 2023, 50(22): 2201002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Feb. 8, 2023

    Accepted: Mar. 21, 2023

    Published Online: Nov. 7, 2023

    The Author Email: Wang Nan (nwang@szu.edu.cn)

    DOI:10.3788/CJL230501

    Topics