Acta Optica Sinica, Volume. 43, Issue 18, 1899907(2023)

Research Progress and Challenges in Retrieval of Ground-Based Mie Scattering Lidar

Feiyue Mao1,2, Weiwei Xu1, Lin Zang3, Zengxin Pan2,4, and Wei Gong2,3、*
Author Affiliations
  • 1School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, Hubei, China
  • 2State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, Hubei, China
  • 3Electronic Information School, Wuhan University, Wuhan 430079, Hubei, China
  • 4Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
  • show less
    References(137)

    [1] Pöschl U. Atmospheric aerosols: composition, transformation, climate and health effects[J]. Angewandte Chemie International Edition, 44, 7520-7540(2005).

    [2] Yu S Q, Liu D, Xu J W et al. Optimization method of retrieving atmospheric boundary layer height by lidar[J]. Acta Optica Sinica, 41, 0728002(2021).

    [3] Gong W, Li J, Mao F Y et al. Comparison of simultaneous signals obtained from a dual-field-of-view lidar and its application to noise reduction based on empirical mode decomposition[J]. Chinese Optics Letters, 9, 050101(2011).

    [4] Gong W, Zhang J Y, Mao F Y et al. Measurements for profiles of aerosol extinction coeffcient, backscatter coeffcient, and lidar ratio over Wuhan in China with Raman/Mie lidar[J]. Chinese Optics Letters, 8, 533-536(2010).

    [5] Immler F, Engelbart D, Schrems O. Fluorescence from atmospheric aerosol detected by a lidar indicates biogenic particles in the lowermost stratosphere[J]. Atmospheric Chemistry and Physics, 5, 345-355(2005).

    [6] Huang Z W, Wang Y K, Bi J R et al. An overview of aerosol lidar: progress and prospect[J]. National Remote Sensing Bulletin, 26, 834-851(2022).

    [7] Liu D, Yang Y Y, Zhou Y D et al. High spectral resolution lidar for atmosphere remote sensing: a review[J]. Infrared and Laser Engineering, 44, 2535-2546(2015).

    [8] Zhang Y P, Liu D, Yang Y Y et al. Spectrum filter performance analysis on near-infrared HighSpectral-resolution lidar[J]. Chinese Journal of Lasers, 43, 0414004(2016).

    [9] Cheng Z T. High spectral resolution lidar based on Michelson interferometer with broadened field of view[D](2017).

    [10] Di H G, Hua H B, Zhang J Q et al. Design and analysis of high-spectral resolution lidar discriminator[J]. Acta Physica Sinica, 66, 184202(2017).

    [11] Zhou Y D. Design of 780 nm high spectral resolution lidar system based on LD[D](2020).

    [12] Shen X. Key technology and system experiment of hyperspectral resolution lidar[D](2021).

    [13] Zhu S Z, Bu L B, Liu J Q et al. Study on optical characteristics and pollution of atmospheric aerosol detected by airborne hyperspectral resolution lidar[J]. Chinese Journal of Lasers, 48, 1710003(2021).

    [14] Lohmann U, Feichter J. Global indirect aerosol effects: a review[J]. Atmospheric Chemistry and Physics, 5, 715-737(2005).

    [15] Jiang Y B, Froidevaux L, Lambert A et al. Validation of aura microwave limb sounder ozone by ozonesonde and lidar measurements[J]. Journal of Geophysical Research: Atmospheres, 112, D24-34(2007).

    [16] Fiocco G, Smullin L D. Detection of scattering layers in the upper atmosphere (60–140 km) by optical radar[J]. Nature, 199, 1275-1276(1963).

    [17] Qiu J H, Lü D R, Chen H B et al. Modern research progresses in atmospheric physics[J]. Chinese Journal of Atmospheric Sciences, 27, 628-652(2003).

    [18] Zhou J, Yue G M, Qi F D et al. Optical properties of aerosol derived from lidar measurements[J]. Chinese Journal of Quantum Electronics, 15, 140-148(1998).

    [19] Yang Z, Li Q, Sun D S. Study about atmosphere extinction coefficient based on 1064 nm Mie-scattering lidar[J]. Laser Technology, 30, 170-173(2006).

    [20] Zhang G X, Zhao Y F, Zhang Y C et al. A lidar system for monitoring planetary boundary layer aerosol in daytime[J]. Acta Physica Sinica, 57, 7390-7395(2008).

    [21] Schotland R M, Sassen K, Stone R. Observations by lidar of linear depolarization ratios for hydrometeors[J]. Journal of Applied Meteorology, 10, 1011-1017(1971).

    [22] Pal S R, Carswell A I. Polarization properties of lidar scattering from clouds at 347 nm and 694 nm[J]. Applied Optics, 17, 2321-2328(1978).

    [23] Iwasaka Y, Hayashida S. The effects of the volcanic eruption of St. Helens on the polarization properties of stratospheric aerosols; lidar measurement at Nagoya[J]. Journal of the Meteorological Society of Japan Ser Ⅱ, 59, 611-614(1981).

    [24] Sasano Y, Browell E V. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations[J]. Applied Optics, 28, 1670-1679(1989).

    [25] Zhou J, Yue G M, Jin C J et al. Two-wavelength Mie lidar for monitoring of tropospheric aerosol[J]. Acta Optica Sinica, 20, 1412-1417(2000).

    [26] Chi R L, Wu D C, Liu B et al. Dual-wavelength Mie lidar observations of tropospheric aerosols[J]. Spectroscopy and Spectral Analysis, 29, 1468-1472(2009).

    [27] Zhong Z Q, Liu B, Fan A Y et al. Two-wavelength Mie lidar with two receivers[J]. Journal of Atmospheric and Environmental Optics, 3, 173-178(2008).

    [28] Qiu J H, Zheng S P, Huang Q R et al. Lidar measurements of cloud and aerosol in the upper troposphere in Beijing[J]. Chinese Journal of Atmospheric Sciences, 27, 1-7(2003).

    [29] Mao J D, Hua D X, He T Y et al. Lidar observations of atmospheric aerosol optical properties over Yinchuan area[J]. Spectroscopy and Spectral Analysis, 30, 2006-2010(2010).

    [30] Mao M J, Wu Y H, Qi F D et al. Mobile dual-wavelength Mie lidar[J]. High Power Laser and Particle Beams, 17, 677-680(2005).

    [31] Zhao H, Hua D X, Di H G et al. Development of all time multi-wavelength lidar system and analysis of its signal to noise ratio[J]. Chinese Journal of Lasers, 42, 0113001(2015).

    [32] Di H G, Hou X L, Zhao H et al. Detections and analyses of aerosol optical prop erties under different weather conditions using multi-wavelength Mie lidar[J]. Acta Physica Sinica, 63, 244206(2014).

    [33] Liu D, Qi F D, Jin C J et al. Polarization lidar observations of cirrus clouds and Asian dust aerosols over Hefei[J]. Chinese Journal of Atmospheric Sciences, 27, 1093-1100(2003).

    [34] Chi R L, Liu H T, Wang Z Z et al. Observations of cirrus clouds using polarization Mie lidar[J]. High Power Laser and Particle Beams, 21, 1295-1300(2009).

    [35] Pan Y B, Lü D R, Pan W L et al. A case study of cirrus cloud over Geermu city using two-wavelength polarization lidar[J]. Climatic and Environmental Research, 20, 581-588(2015).

    [36] Misra A, Tripathi S N, Kaul D S et al. Study of MPLNET-derived aerosol climatology over Kanpur, India, and validation of CALIPSO level 2 version 3 backscatter and extinction products[J]. Journal of Atmospheric and Oceanic Technology, 29, 1285-1294(2012).

    [37] Wandinger U, Freudenthaler V, Baars H et al. EARLINET instrument intercomparison campaigns: overview on strategy and results[J]. Atmospheric Measurement Techniques, 9, 1001-1023(2016).

    [38] De Mazière M, Thompson A M, Kurylo M J et al. The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives[J]. Atmospheric Chemistry and Physics, 18, 4935-4964(2018).

    [39] Shimizu A, Nishizawa T, Jin Y et al. Evolution of a lidar network for tropospheric aerosol detection in East Asia[J]. Optical Engineering, 56, 031219(2016).

    [40] Guerrero-Rascado J L, Landulfo E, Antuña J C et al. Latin American lidar network (LALINET) for aerosol research: diagnosis on network instrumentation[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 138/139, 112-120(2016).

    [41] Tian X M, Liu D, Xu J W et al. Review on atmospheric detection lidar network and spaceborne lidar technology[J]. Journal of Atmospheric and Environmental Optics, 13, 401-416(2018).

    [42] Zuev V V, Burlakov V D, Nevzorov A V et al. 30-year lidar observations of the stratospheric aerosol layer state over Tomsk (Western Siberia, Russia)[J]. Atmospheric Chemistry and Physics, 17, 3067-3081(2017).

    [43] Yuan L, Liu B, Wang B X et al. Design of mobile 1064 nm Mie scattering lidar[J]. Chinese Journal of Lasers, 37, 1721-1725(2010).

    [44] Wang J, Liu W Q, Zhang T S et al. Development of a portable dual field-of-view Mie-scattering Lidar[J]. Chinese Journal of Scientific Instrument, 40, 148-154(2019).

    [45] Kamei A, Sugimoto N, Matsui I et al. Volcanic aerosol layer observed by shipboard lidar over the tropical western Pacific[J]. SOLA, 2, 1-4(2006).

    [46] Fernald F G, Herman B M, Reagan J A. Determination of aerosol height distributions by lidar[J]. Journal of Applied Meteorology, 11, 482-489(1972).

    [47] Stelmaszczyk K, Dell’Aglio M, Chudzyński S et al. Analytical function for lidar geometrical compression form-factor calculations[J]. Applied Optics, 44, 1323-1331(2005).

    [48] Wang W, Mao F Y, Gong W et al. Overlap factor calculation method based on laser intensity distribution and its sensitivity analysis[J]. Acta Optica Sinica, 34, 0228005(2014).

    [49] Sasano Y, Shimizu H, Takeuchi N et al. Geometrical form factor in the laser radar equation: an experimental determination[J]. Applied Optics, 18, 3908-3910(1979).

    [50] Su J, McCormick M P, Liu Z Y et al. Obtaining a ground-based lidar geometric form factor using coincident spaceborne lidar measurements[J]. Applied Optics, 49, 108-113(2010).

    [51] Xiao S R, Long Q, Zhou J et al. Calibration of reference height in the inversion extinction coefficient for non coaxial laser radar[J]. Modern Radar, 34, 84-88(2012).

    [52] Halldórsson T, Langerholc J. Geometrical form factors for the lidar function[J]. Applied Optics, 17, 240-244(1978).

    [53] Sassen K, Dodd G C. Lidar crossover function and misalignment effects[J]. Applied Optics, 21, 3162-3165(1982).

    [54] Liu B, Yi F, Yu C M. Methods for optical adjustment in lidar systems[J]. Applied Optics, 44, 1480-1484(2005).

    [55] Berezhnyy I. A combined diffraction and geometrical optics approach for lidar overlap function computation[J]. Optics and Lasers in Engineering, 47, 855-859(2009).

    [56] Velotta R, Bartoli B, Capobianco R et al. Analysis of the receiver response in lidar measurements[J]. Applied Optics, 37, 6999-7007(1998).

    [57] Liu Q J, Yang L, Wang J Y et al. Calculation of the overlap factor and correction of near-field signal of the off-axis lidar based on the Gaussian mode of laser beam[J]. Acta Physica Sinica, 58, 7376-7381(2009).

    [58] Di H G, Hua D X, Wang Y F et al. Investigation on the correction of the Mie scattering lidar’s overlapping factor and echo signals over the total detection range?[J]. Acta Physica Sinica, 62, 094215(2013).

    [59] Wandinger U, Ansmann A. Experimental determination of the lidar overlap profile with Raman lidar[J]. Applied Optics, 41, 511-514(2002).

    [60] Guerrero-Rascado J L, Costa M J, Bortoli D et al. Infrared lidar overlap function: an experimental determination[J]. Optics Express, 18, 20350-20359(2010).

    [61] Zhang Y C, Wang L F, Wang C et al. Analysis and research on influencing factors of non-coaxial lidar overlap factor based on ray tracing[J]. Transactions of Beijing Institute of Technology, 43, 213-220(2023).

    [62] Gong W, Mao F Y, Li J. OFLID: simple method of overlap factor calculation with laser intensity distribution for biaxial lidar[J]. Optics Communications, 284, 2966-2971(2011).

    [63] Mao F Y, Gong W, Li J. Geometrical form factor calculation using Monte Carlo integration for lidar[J]. Optics & Laser Technology, 44, 907-912(2012).

    [64] Wang J, Liu W Q, Liu C et al. The determination of aerosol distribution by a No-blind-zone scanning lidar[J]. Remote Sensing, 12, 626(2020).

    [65] Li J, Gong W, Mao F Y et al. Dual field of view lidar for observing atmospheric aerosols over Wuhan[J]. Acta Optica Sinica, 33, 1201001(2013).

    [66] Wang J. Development and application of double field of view and zero blind area lidar[D](2020).

    [67] Huang L F, Gong W, Li J et al. Signal splicing of dual-receiver Mie scattering lidar in atmospheric remote sensing[J]. Journal of Remote Sensing, 16, 705-719(2012).

    [68] Ma X M, Tao Z M, Zhang L L et al. Ground layer aerosol detection technology during daytime based on side-scattering lidar[J]. Acta Optica Sinica, 38, 0401005(2018).

    [69] Di H G, Hua D X. Research status and progress of Lidar for atmosphere in China(Invited)[J]. Infrared and Laser Engineering, 50, 20210032(2021).

    [70] Pal S R, Steinbrecht W, Carswell A I. Automated method for lidar determination of cloud-base height and vertical extent[J]. Applied Optics, 31, 1488-1494(1992).

    [71] Wang Z E, Sassen K. Cloud type and macrophysical property retrieval using multiple remote sensors[J]. Journal of Applied Meteorology, 40, 1665-1682(2001).

    [72] Kovalev V A, Newton J, Wold C et al. Simple algorithm to determine the near-edge smoke boundaries with scanning lidar[J]. Applied Optics, 44, 1761-1768(2005).

    [73] Cromwell E, Flynn D. Lidar cloud detection with fully convolutional networks[C], 619-627(2019).

    [74] Morille Y, Haeffelin M, Drobinski P et al. STRAT: an automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data[J]. Journal of Atmospheric and Oceanic Technology, 24, 761-775(2007).

    [75] Mao F Y, Gong W, Zhu Z M. Simple multiscale algorithm for layer detection with lidar[J]. Applied Optics, 50, 6591-6598(2011).

    [76] Chen S Y, Wang J Q, Chen H et al. Lidar cloud detection based on improved simple multiscale method[J]. Infrared and Laser Engineering, 49, 20200379(2020).

    [77] Young S A. Analysis of lidar backscatter profiles in optically thin clouds[J]. Applied Optics, 34, 7019-7031(1995).

    [78] Vaughan M A, Powell K A, Winker D M et al. Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements[J]. Journal of Atmospheric and Oceanic Technology, 26, 2034-2050(2009).

    [79] Rogers R R, Vaughan M A, Hostetler C A et al. Looking through the haze: evaluating the CALIPSO level 2 aerosol optical depth using airborne high spectral resolution lidar data[J]. Atmospheric Measurement Techniques, 7, 4317-4340(2014).

    [80] Kim M H, Omar A H, Vaughan M A et al. Quantifying the low bias of CALIPSO’s column aerosol optical depth due to undetected aerosol layers[J]. Journal of Geophysical Research. Atmospheres: JGR, 122, 1098-1113(2017).

    [81] Lewis J R, Campbell J R, Welton E J et al. Overview of MPLNET version 3 cloud detection[J]. Journal of Atmospheric and Oceanic Technology, 33, 2113-2134(2016).

    [82] Xu W W, Zhang Y C, Mao F Y et al. Joint multiscale cloud detection algorithm for ground-based lidar[J]. Optics Express, 30, 44449-44463(2022).

    [83] Mao F Y, Liang Z X, Pan Z X et al. A simple multiscale layer detection algorithm for CALIPSO measurements[J]. Remote Sensing of Environment, 266, 112687(2021).

    [84] Collis R T H. Lidar: a new atmospheric probe[J]. Quarterly Journal of the Royal Meteorological Society, 92, 220-230(1966).

    [85] Klett J D. Stable analytical inversion solution for processing lidar returns[J]. Applied Optics, 20, 211-220(1981).

    [86] Fernald F G. Analysis of atmospheric lidar observations: some comments[J]. Applied Optics, 23, 652-653(1984).

    [87] Rocadenbosch F, Soriano C, Comerón A et al. Lidar inversion of atmospheric backscatter and extinction-to-backscatter ratios by use of a Kalman filter[J]. Applied Optics, 38, 3175-3189(1999).

    [88] Kovalev V A. Stable near-end solution of the lidar equation for clear atmospheres[J]. Applied Optics, 42, 585-591(2003).

    [89] Rocadenbosch F, Comerón A, Pineda D. Assessment of lidar inversion errors for homogeneous atmospheres[J]. Applied Optics, 37, 2199-2206(1998).

    [90] Sasano Y, Browell E V, Ismail S. Error caused by using a constant extinction/backscattering ratio in the lidar solution[J]. Applied Optics, 24, 3929-3932(1985).

    [91] Sasano Y. Tropospheric aerosol extinction coefficient profiles derived from scanning lidar measurements over Tsukuba, Japan, from 1990 to 1993[J]. Applied Optics, 35, 4941-4952(1996).

    [92] Mao F Y, Shi R X, Rosenfeld D et al. Retrieving instantaneous extinction of aerosol undetected by the CALIPSO layer detection algorithm[J]. Atmospheric Chemistry and Physics, 22, 10589-10602(2022).

    [93] Kunz G J, de Leeuw G. Inversion of lidar signals with the slope method[J]. Applied Optics, 32, 3249-3256(1993).

    [94] Rocadenbosch F, Comerón A, Albiol L. Statistics of the slope-method estimator[J]. Applied Optics, 39, 6049-6057(2000).

    [95] Tian P F, Zhang L, Cao X J et al. A novel approach based on Fernald’s and Klett’s method to determine the atmospheric extinction coefficient boundary value[J]. Chinese Journal of Quantum Electronics, 30, 57-65(2013).

    [96] Xiong X L, Feng S, Jiang L H et al. A novel method for determining the boundary value of the atmospheric extinction coefficient[J]. Journal of Optoelectronics·Laser, 22, 1699-1705(2011).

    [97] He Y H, Zheng Y C, Cheng J et al. Estimation of extinction efficient boundary value with least-square fitting for lidar return signal[J]. Chinese Journal of Quantum Electronics, 21, 879-883(2004).

    [98] Yang B, Mo Z S, Liu H J et al. Study on abrupt signal processing method of atmospheric lidar(Invited)[J]. Infrared and Laser Engineering, 51, 20211117(2022).

    [99] Xiong X L, Jiang L H, Feng S et al. Determination of the boundary value of atmospheric aerosol extinction coefficient based on fixed point principle[J]. Journal of Optoelectronics·Laser, 23, 303-309(2012).

    [100] Xiong X L, Jiang L H, Feng S et al. Using improved Newton method to determine the boundary value of atmospheric extinction coefficient[J]. Infrared and Laser Engineering, 41, 1744-1749(2012).

    [101] Sun G D, Qin L A, Zhang S L et al. A new method of measuring boundary value of atmospheric extinction coefficient[J]. Acta Physica Sinica, 67, 054205(2018).

    [102] Chen T, Wu D C, Liu B et al. A new method for determining aerosol baekscatter coefficient boundary value in the lower troposphere[J]. Acta Optica Sinica, 30, 1531-1536(2010).

    [103] Ma Y Z, Liu J Q, Chen N et al. Determination of the boundary value of the aerosol extinction coefficient and its effects on the extinction coefficient profile of aerosol in lower atmosphere[J]. Optik, 160, 283-297(2018).

    [104] Tao Z M, Zhang Q Z, Yuan K E et al. Retrieving aerosol backscattering coefficient for short range lidar using parameter selection at reference point[J]. Chinese Optics Letters, 8, 732(2010).

    [105] Mao F Y, Wang W, Min Q L et al. Approach for selecting boundary value to retrieve Mie-scattering lidar data based on segmentation and two-component fitting methods[J]. Optics Express, 23, A604-A613(2015).

    [106] Zhang Y C, Chen S, Tan W S et al. Inversion algorithm of aerosol backscattering coefficient with water cloud particle backscattering coefficient as boundary value[J]. Acta Optica Sinica, 42, 2428002(2022).

    [107] Wiegner M, Groß S, Freudenthaler V et al. The May/June 2008 Saharan dust event over Munich: intensive aerosol parameters from lidar measurements[J]. Journal of Geophysical Research: Atmospheres, 116, D23213(2011).

    [108] Omar A H, Won J G, Winker D M et al. Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements[J]. Journal of Geophysical Research, 110, D10-14(2005).

    [109] Zhang Z Y, Su L et al. Retrieval and analysis of aerosol lidar ratio at several typical regions in China[J]. Chinese Journal of Lasers, 40, 0513002(2013).

    [110] Kim M H, Omar A H, Tackett J L et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm[J]. Atmospheric Measurement Techniques, 11, 6107-6135(2018).

    [111] Huang Z W, Huang J P, Bi J R et al. Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment[J]. Journal of Geophysical Research, 115, D00-15(2010).

    [112] Song Y H, Shi L L, Wang Y F et al. Retrieve of lidar ratio of aerosols by iteration[J]. Chinese Journal of Lasers, 43, 0113001(2016).

    [113] Cuesta J, Flamant P H, Flamant C. Synergetic technique combining elastic backscatter lidar data and sunphotometer AERONET inversion for retrieval by layer of aerosol optical and microphysical properties[J]. Applied Optics, 47, 4598-4611(2008).

    [114] Bao Q, He J L, Zha Y. Retrieval of aerosol extinction coefficient and optical thickness using varied lidar ratio[J]. Acta Optica Sinica, 35, 0301002(2015).

    [115] Hua W L, Han Y, Qiao H Y et al. Profiling of dust aerosol mass concentration over Dunhuang: case studies[J]. Plateau Meteorology, 37, 1428-1439(2018).

    [116] Wang X, Frontoso M G, Pisani G et al. Retrieval of atmospheric particles optical properties by combining ground-based and spaceborne lidar elastic scattering profiles[J]. Optics Express, 15, 6734-6743(2007).

    [117] Su J, Liu Z Y, Wu Y H et al. Retrieval of multi-wavelength aerosol lidar ratio profiles using Raman scattering and Mie backscattering signals[J]. Atmospheric Environment, 79, 36-40(2013).

    [118] Shen J, Cao N. Inversion of tropospheric aerosol extinction coefficient profile by Mie-Raman scattering lidar[J]. Chinese Journal of Lasers, 44, 0610003(2017).

    [119] Fang H T, Huang D S. Noise reduction in lidar signal based on discrete wavelet transform[J]. Optics Communications, 233, 67-76(2004).

    [120] Fang H T, Huang D S, Wu Y H. Antinoise approximation of the lidar signal with wavelet neural networks[J]. Applied Optics, 44, 1077-1083(2005).

    [121] Mao F Y, Gong W, Li C. Anti-noise algorithm of lidar data retrieval by combining the ensemble Kalman filter and the Fernald method[J]. Optics Express, 21, 8286-8297(2013).

    [122] Wu S H, Liu Z S, Liu B Y. Enhancement of lidar backscatters signal-to-noise ratio using empirical mode decomposition method[J]. Optics Communications, 267, 137-144(2006).

    [123] Zhou Z R, Hua D X, Wang Y F et al. Improvement of the signal to noise ratio of Lidar echo signal based on wavelet de-noising technique[J]. Optics and Lasers in Engineering, 51, 961-966(2013).

    [124] Huang N E, Shen Z, Long S R et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 454, 903-995(1998).

    [125] Tian P F, Cao X J, Liang J N et al. Improved empirical mode decomposition based denoising method for lidar signals[J]. Optics Communications, 325, 54-59(2014).

    [126] Wu Z H, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 1, 1-41(2009).

    [127] Xu F, Chang J H, Liu B G et al. De-noising method research for lidar echo signal based on variational mode decomposition[J]. Laser & Infrared, 48, 1443-1448(2018).

    [128] Li C, Pan Z X, Mao F Y et al. De-noising and retrieving algorithm of Mie lidar data based on the particle filter and the Fernald method[J]. Optics Express, 23, 26509-26520(2015).

    [129] Zeng X J, Guo W P, Yang K C et al. Noise reduction and retrieval by modified lidar inversion method combines joint retrieval method and machine learning[J]. Applied Physics B, 124, 238(2018).

    [130] Mao F Y, Liu J, Wang L et al. Denoising and retrieval algorithm based on a dual ensemble Kalman filter for elastic lidar data[J]. Optics Communications, 433, 137-143(2019).

    [131] Jiang L H, Fu C, Liu W Q et al. Lidar backscattering signal denoising method based on adaptive multi-scale morphological filtering and EMD[J]. Infrared and Laser Engineering, 44, 1673-1679(2015).

    [132] Chang J H, Zhu L Y, Li H X et al. Noise reduction in Lidar signal using correlation-based EMD combined with soft thresholding and roughness penalty[J]. Optics Communications, 407, 290-295(2018).

    [133] Ma Y Z, Liu K, Zhang Y F et al. Laser radar signal denoising algorithm based on CEEMD combined with improved wavelet threshold[J]. Systems Engineering and Electronics, 45, 93-100(2023).

    [134] Zhang Y J, Wu T, Zhang X Z et al. Rayleigh lidar signal denoising method combined with WT, EEMD and LOWESS to improve retrieval accuracy[J]. Remote Sensing, 14, 3270(2022).

    [135] Wang Z Z, Ding H B, Wang B X et al. New denoising method for lidar signal by the WT-VMD joint algorithm[J]. Sensors, 22, 5978(2022).

    [136] Ding H B, Wang Z Z, Liu D. Comparison of de-noising methods of LiDAR signal[J]. Acta Optica Sinica, 41, 2401001(2021).

    [137] Hu M H, Mao J D, Li J et al. A novel lidar signal denoising method based on convolutional autoencoding deep learning neural network[J]. Atmosphere, 12, 1403(2021).

    Tools

    Get Citation

    Copy Citation Text

    Feiyue Mao, Weiwei Xu, Lin Zang, Zengxin Pan, Wei Gong. Research Progress and Challenges in Retrieval of Ground-Based Mie Scattering Lidar[J]. Acta Optica Sinica, 2023, 43(18): 1899907

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 30, 2022

    Accepted: Apr. 21, 2023

    Published Online: Sep. 11, 2023

    The Author Email: Gong Wei (weigongwhu@163.com)

    DOI:10.3788/AOS222188

    Topics