Chinese Journal of Lasers, Volume. 43, Issue 2, 205001(2016)
Laser Performance of Yb3+-Doped Photonic Crystal Fiber Using the Powder Sinter Direction Drawn Rod Technology
[1] [1] D J Richardson, J Nilsson, W A Clarkson. High power fiber lasers: Current status and future perspectives (invited paper) [J]. J Opt Soc Am B, 2010, 27(11): B63-B92.
[2] [2] V Fomin, M Abramov, A Ferin, et al..10 kW single mode fiber laser[C]. SyTu-1.3, Symposium on High-Power Fiber Lasers, 14th International Conference, Laser Optics, 2010.
[3] [3] X Fang, M Hu, C Xie, et al.. High pulse energy mode-locked multicore photonic crystal fiber laser[J]. Opt Lett, 2011, 36(6): 1005-1007.
[4] [4] P G Yan, G L Zhang, H F Wei, et al.. Double cladding seven-core photonic crystal fibers with different GVD properties and fundamental supermode output[J]. J Lightwave Technol, 2013, 31(23): 3658-3662.
[5] [5] H F Wei, H W Chen, S P Chen, et al.. A compact seven-core photonic crystal fiber supercontinuum source with 42.3 W output power[J]. Laser Phys Lett, 2013, 10(4): 045101.
[6] [6] X H Fang, M L Hu, B W Liu, et al.. Generation of 150 MW, 110 fs pulses by phase-locked amplification in multicore photonic crystal fiber[J]. Opt Lett, 2010, 35(14): 2326-2328.
[7] [7] E Shcherbakov, V Fomin, A Abramov, et al.. Industrial grade 100 kW power CW fiber laser[C]. Advanced Solid-State Lasers Congress, 2013: ATh4A.2.
[8] [8] Zhang Hanwei, Zhou Pu, Wang Xiaolin, et al.. Power limit of different single -frequency Yb3+-doped fibers[J]. Acta Optica Sinica, 2014, 34(1): 0114003.
[9] [9] H J Otto, F Stutzki, N Modsching, et al..2 kW average power from a pulsed Yb-doped rod-type fiber amplifier[J]. Opt Lett, 2014, 39(22): 6446-6448.
[10] [10] E Stiles. New developments in IPG fiber laser technology[C]. Proceedings of the 5th International Workshop on Fiber Laser, 2009, 1: 1-20.
[11] [11] Li Pingxue, Zhao Ziqiang, Zhang Guangju, et al.. Large-mode-area double cladding Yb-doped photonic crystal fiber Qswitched mode-locked laser with graphene-based saturable absorber mirror[J]. Chinese J Lasers, 2014, 41(4): 0402001.
[12] [12] Li Pingxue, Yang Chun, Zhao Ziqiang, et al.. 1027 nm large-mode-area double-cladding photonic crystal fiber mode-locked laser based on SESAM[J]. Chinese J Lasers, 2014, 41(5): 0502007.
[13] [13] J J Koponen, L Petit, T Kokki, et al.. Progress in direct nanoparticle deposition for the development of the next generation fiber lasers[J]. Opt Eng, 2011, 50(11): 111605.
[14] [14] A Langner, M Such, G Sch tz, et al.. Multi-kW single fiber laser based on an extra large mode area fiber design[C]. SPIE, 2012, 8237: 82370F.
[15] [15] M Devautour, P Roy, S Février, et al.. Nonchemical-vaper-deposition process for fabrication of highly efficient Yb-doped large core fiber[J]. Appl Opt, 2009, 48(31): G139-G142.
[16] [16] M Leich, F Just, A Langner, et al.. Highly efficient Yb-doped silica fibers prepared by powder sinter technology[J]. Opt Lett, 2011, 36(9): 1557-1559.
[17] [17] S Liu, M Wang, Q Zhou, et al.. Ytterbium-doped silica photonic crystal fiber laser fabricated by the nanoporous glass sintering technique[J]. Laser Phys, 2014, 24(6): 065801.
[18] [18] S K Wang, S Y Feng, M Wang, et al.. Optical and laser properties of Yb3+-doped Al2O3-P2O5-SiO2 large-mode-area photonic crystal fiber prepared by the sol-gel method[J]. Laser Phys Lett, 2013, 10(11): 115802.
[19] [19] J L Wu, W Zhang, G Y Zhou, et al.. Design and fabrication of ytterbium-doped photonic crystal fiber with low non-linearity [J]. Laser Phys, 2015, 25(5): 055105.
[20] [20] C M Xia, G Y Zhou, W Zhang, et al.. Fabrication and laser performance of Yb3+/Al3+ co-doped photonic crystal fiber synthesized by plasma nonchemical vapor deposition method[J]. Opt Fiber Technol, 2015, 25: 20-24.
[21] [21] C M Xia, G Y Zhou, W Zhang, et al.. Optical properties of Tm3+-doped photonic crystal fiber fabricated by non-chemical vapor deposition method[J]. Optoelctronics and Advanced Materials-Rapid Communications, 2015, 9: 619-622.
[22] [22] C M Xia, G Y Zhou, W Zhang, et al.. Optical properties of Yb3+/Ho3+ co-doped air cladding silica-based fiber fabricated with plasma non-chemical vapor deposition method[J]. Appl Phys A, 2015, 118(2): 523-529.
[23] [23] C M Xia, G Y Zhou, W Zhang, et al.. Blue and near-infrared up-conversion in double-air-cladding Tm3+-doped silica fiber under 1064 nm excitation[J]. Opt Quant Electron, 2015, 47(11): 3435-3444.
[25] [25] C Wang, G Y Zhou, C M Xia, et al.. Influence of the melting atmosphere on Yb3+/Al3+ co-doped silica glass with powder melting technology[J]. Opt Fiber Technol, 2014, 20(2): 106.
[26] [26] P G Yan, J Shu, S C Ruan, et al.. Polarization dependent visible supercontinuum generation in the nanoweb fiber[J]. Opt Express, 2011, 6(4): 4985-4990.
[27] [27] J Limpert, T Schreiber, S Nolte. High power air-clad large-mode-area photonic crystal fiber laser[J]. Opt Express, 2003, 11(7): 818-823.
[30] [30] Tao Rumao, Zhou Pu, Xiao Hu, et al.. Progress of study on mode instability in high power fiber amplifiers[J]. Laser & Optoelectronics Progress, 2014, 51(2): 020001.
Get Citation
Copy Citation Text
Xia Changming, Tian Hongchun, Hou Zhiyun, Liu Jiantao, Zhang Sa, Zhang Wei, Fu Jian, Wu Jiale, Zhou Guiyao. Laser Performance of Yb3+-Doped Photonic Crystal Fiber Using the Powder Sinter Direction Drawn Rod Technology[J]. Chinese Journal of Lasers, 2016, 43(2): 205001
Category: Optical communication
Received: Jul. 22, 2015
Accepted: --
Published Online: Jan. 25, 2016
The Author Email: Changming Xia (xiacmm@126.com)