Acta Photonica Sinica, Volume. 51, Issue 8, 0851509(2022)

Structure and Biomedical Applications of Small Molecular Super-resolution Fluorescent Imaging Dyes(Invited)

Lin LI, Duoteng ZHANG, and Yunwei QU
Author Affiliations
  • [in Chinese]
  • show less
    References(64)

    [1] LIU H W, CHEN L, XU C et al. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging[J]. Chemical Society Reviews, 47, 7140-7180(2018).

    [2] WANG S, REN W X, HOU J T et al. Fluorescence imaging of pathophysiological microenvironments[J]. Chemical Society Reviews, 50, 8887-8902(2021).

    [3] SCHERMELLEH L, FERRAND A, HUSER T et al. Super-resolution microscopy demystified[J]. Nature Cell Biology, 21, 72-84(2019).

    [4] PAWLEY J B[M]. Handbook of biological confocal microscopy(1995).

    [5] ABBE E K. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Archiv Für Mikroskopische Anatomie, 913-468(1873).

    [6] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [7] GUSTAFSSON M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000).

    [8] BETZIG E, PATTERSON G H, SOUGRAT R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [9] RUST M J, BATES M, ZHUANG X W. Sub-diffraction-limit imaging by Stochastic Optical Reconstruction Microscopy (STORM)[J]. Nature Methods, 3, 793-795(2006).

    [10] FERNÁNDEZ-SUÁREZ M, TING A Y. Fluorescent probes for super-resolution imaging in living cells[J]. Nature Reviews Molecular Cell Biology, 9, 929(2008).

    [11] KLAR T A, HELL S W. Subdiffraction resolution in far-field fluorescence microscopy[J]. Optics Letters, 24, 954-956(2007).

    [12] DICKSON R M, CUBITT A B, TSIEN A B et al. On/off blinking and switching behaviour of single molecules of green fluorescent protein[J]. Nature, 388, 355-358(1997).

    [13] SAMANTA S, GONG W, LI W et al. Organic fluorescent probes for Stochastic Optical Reconstruction Microscopy (STORM): recent highlights and future possibilities[J]. Coordination Chemistry Reviews, 380, 17-34(2019).

    [14] GUSTAFSSON M G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 13081-13086(2005).

    [15] LINDE S V D, SAUER M. How to switch a fluorophore: from undesired blinking to controlled photoswitching[J]. Chemical Society Reviews, 43, 1076-1087(2013).

    [16] WU J, SHI Z, ZHU L et al. The design and bioimaging applications of NIR fluorescent organic dyes with high brightness[J]. Advanced Optical Materials, 10, 2102514(2022).

    [17] WANG L, DU W, HU Z et al. Hybrid rhodamine fluorophores in the visible/NIR region for biological imaging[J]. Angewandte Chemie International Edition, 58, 14026-14043(2019).

    [18] BOYARSKIY V P, BELOV V N, MEDDA R et al. Photostable, amino reactive and water-soluble fluorescent labels based on sulfonated rhodamine with a rigidized xanthene fragment[J]. Chemistry - A European Journal, 14, 1784-1792(2008).

    [19] BUTKEVICH A N, BELOV V N, KOLMAKOV K et al. Hydroxylated fluorescent dyes for live-cell labeling: synthesis, spectra and super-resolution STED[J]. Chemistry, 23, 12114-12119(2017).

    [20] WANG L, TRAN M, D'ESTE E et al. A general strategy to develop cell permeable and fluorogenic probes for multicolour nanoscopy[J]. Nature Chemistry, 12, 165-172(2019).

    [21] GRIMM J B, ENGLISH B P, CHEN J et al. A general method to improve fluorophores for live-cell and single-molecule microscopy[J]. Nature Methods, 12, 244-250(2015).

    [22] YE Z, YANG W, WANG C et al. Quaternary piperazine substituted rhodamines with enhanced brightness for super-resolution Imaging[J]. Journal of the American Chemical Society, 141, 14491-14495(2019).

    [23] SONG Y, ZHANG X, SHEN Z et al. Improving brightness and stability of Si-rhodamine for super-resolution imaging of mitochondria in living cells[J]. Analytical Chemistry, 92, 12137-12144(2020).

    [24] BUTKEVICH A N, BOSSI M L, LUKINAVIČIUS G et al. Triarylmethane fluorophores resistant to oxidative photobluing[J]. Journal of the American Chemical Society, 141, 981-989(2019).

    [25] WURM C A, KOLMAKOV K, GÖTTFERTF et al. Novel red fluorophores with superior performance in STED microscopy[J]. Optical Nanoscopy, 1, 7(2012).

    [26] FU M, XIAO Y, QIAN X et al. A design concept of long-wavelength fluorescent analogs of rhodamine dyes: replacement of oxygen with silicon atom[J]. Chemical Communications, 1780-1782(2008).

    [27] YU Y, WU S, NOWAK J et al. Live-cell imaging of the cytoskeleton in elongating cotton fibres[J]. Nature Plants, 5, 498-504(2019).

    [28] LUKINAVIČIUS G, BLAUKOPF C, PERSHAGEN E et al. SiR-Hoechst is a far-red DNA stain for live-cell nanoscopy[J]. Nature Communications, 6, 8497(2015).

    [29] KOLMAKOV K, HEBISCH E, WOLFRAM T et al. Far-red emitting fluorescent dyes for optical nanoscopy: fluorinated silicon-rhodamines (SiRF Dyes) and phosphorylated oxazines[J]. Chemistry, 21, 13344-13356(2015).

    [30] HORVÁTH P, ŠEBEJ P, ŠOLOMEK T et al. Small-molecule fluorophores with large Stokes shifts: 9-Iminopyronin analogues as clickable tags[J]. The Journal of Organic Chemistry, 80, 1299-1311(2014).

    [31] WU L, BURGESS K. Fluorescent amino- and thiopyronin dyes[J]. Organic Letters, 10, 1779-1782(2008).

    [32] BUTKEVICH A N, LUKINAVIČIUS G, D'ESTE E et al. Cell-permeant large Stokes shift dyes for transfection-free multicolor nanoscopy[J]. Journal of the American Chemical Society, 139, 12378-12381(2017).

    [33] SCHILL H, NIZAMOV S, BOTTANELLI F et al. 4‐Trifluoromethyl-substituted coumarins with large Stokes shifts: synthesis, bioconjugates, and their use in super-resolution fluorescence microscopy[J]. Chemistry-A European Journal, 19, 16556-16565(2013).

    [34] JIANG G, REN T B, D'ESTE E et al. A synergistic strategy to develop photostable and bright dyes with long Stokes shift for nanoscopy[J]. Nature Communications, 13, 2264(2022).

    [35] BATES M, BLOSSER T R, ZHUANG X W. Short-range spectroscopic ruler based on a single-molecule optical switch[J]. Physical Review Letters, 94, 108101(2005).

    [36] HEILEMANN M, MARGEAT E, KASPER R et al. Carbocyanine dyes as efficient reversible single-molecule optical switch[J]. Journal of the American Chemical Society, 127, 3801-3806(2005).

    [37] CONLEY N R, BITEEN J S, MOERNER W E. Cy3-Cy5 covalent heterodimers for single-molecule photoswitching[J]. The Journal of Physical Chemistry B, 112, 11878-11880(2008).

    [38] KNAUER K H, GLEITER R. Photochromie von rhodaminderivaten[J]. Angewandte Chemie, 89, 116-117(1977).

    [39] FÖLLING J, BELOV V, KUNETSKY R et al. Photochromic rhodamines provide nanoscopy with optical sectioning[J]. Angewandte Chemie International Edition, 46, 6266-6270(2007).

    [40] LEE M K, RAI P, WILLIAMS J et al. Small-molecule labeling of live cell surfaces for three-dimensional super-resolution microscopy[J]. Journal of the American Chemical Society, 136, 14003-14006(2014).

    [41] LORD S J, CONLEY N R, LEE H L D et al. A photoactivatable push-pull fluorophore for single-molecule imaging in live cells[J]. Journal of the American Chemical Society, 130, 9204-9205(2008).

    [42] LEE H L D, LORD S J, IWANAGA S et al. Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores[J]. Journal of the American Chemical Society, 132, 15099-15101(2010).

    [43] GRIMM J B, ENGLISH B P, CHOI H et al. Bright photoactivatable fluorophores for single-molecule imaging[J]. Nature Methods, 13, 985-988(2016).

    [44] LINCOLN R, GREENE L E, ZHANG W et al. Mitochondria alkylation and cellular trafficking mapped with a lipophilic BODIPY-acrolein fluorogenic probe[J]. Journal of the American Chemical Society, 139, 16273-16281(2017).

    [45] ZHANG Y, SONG K H, TANG S et al. Far-red photoactivatable BODIPYs for the super-resolution imaging of live cells[J]. Journal of the American Chemical Society, 140, 12741-12745(2018).

    [46] TANG J, ROBICHAUX M A, WU K L et al. Single-atom fluorescence switch: a general approach towards visible light-activated dyes for biological imaging[J]. Journal of the American Chemical Society, 141, 14699-14706(2019).

    [47] YE Z, YU H, YANG W et al. A strategy to lengthen the on-time of photochromic rhodamine spirolactam for super-resolution photoactivated localization microscopy[J]. Journal of the American Chemical Society, 141, 6527-6536(2019).

    [48] HALABI E A, PINOTSI D, FUENTES P R. Photoregulated fluxional fluorophores for live-cell super-resolution microscopy with no apparent photobleaching[J]. Nature Communications, 10, 1232(2019).

    [49] ZHENG Y, YE Z, LIU Z et al. Nitroso-caged rhodamine: a superior green light-activatable fluorophore for single-molecule localization super-resolution imaging[J]. Analytical Chemistry, 93, 7833-7842(2021).

    [50] VAUGHAN J C, DEMPSEY G T, SUN E et al. Phosphine quenching of cyanine dyes as a versatile tool for fluorescence microscopy[J]. Journal of the American Chemical Society, 135, 1197-1200(2013).

    [51] LUKINAVIČIUS G, UMEZAWA K, OLIVIER N et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins[J]. Nature Chemistry, 5, 132-139(2013).

    [52] UNO S N, KAMIYA M, YOSHIHARA T et al. A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging[J]. Nature Chemistry, 6, 681-689(2014).

    [53] HARA D, UNO S N, MOTOKI T et al. Silinanyl rhodamines and silinanyl fluoresceins for super-resolution microscopy[J]. The Journal of Physical Chemistry B, 125, 8703-8711(2021).

    [54] CHI W, QIAO Q, WANG C et al. Descriptor ΔGC-O enables the quantitative design of spontaneously blinking rhodamines for live-cell super-resolution Imaging[J]. Angewandte Chemie International Edition, 59, 20215-20223(2020).

    [55] QI Q, CHI W, LI Y et al. A H-bond strategy to develop acid-resistant photoswitchable rhodamine spirolactams for super-resolution single-molecule localization microscopy[J]. Chemical Science, 10, 4914-4922(2019).

    [56] WANG B, XIONG M, SUSANTO J et al. Transforming rhodamine dyes for (d)STORM super-resolution microscopy via 1, 3-Disubstituted imidazolium substitution[J]. Angewandte Chemie International Edition, 61, e202113612(2021).

    [57] ROUBINET B, WEBER M, SHOJAEI H et al. Fluorescent photoswitchable diarylethenes for biolabeling and single-molecule localization microscopies with optical superresolution[J]. Journal of the American Chemical Society, 139, 6611-6620(2017).

    [58] MOROZUMI A, KAMIYA M, UNO S N et al. Spontaneously blinking fluorophores based on nucleophilic addition/dissociation of intracellular glutathione for live-cell super-resolution imaging[J]. Journal of the American Chemical Society, 142, 9625-9633(2020).

    [59] WÄLDCHEN S, LEHMANN J, KLEIN T et al. Light-induced cell damage in live-cell super-resolution microscopy[J]. Scientific Reports, 5, 15348(2015).

    [60] ZHENG Q, JUETTE M F, JOCKUSCH S et al. Ultra-stable organic fluorophores for single-molecule research[J]. Chemical Society Reviews, 43, 1044-1056(2013).

    [61] TINNEFELD P, CORDES T. 'Self-healing' dyes: intramolecular stabilization of organic fluorophores[J]. Nature Methods, 9, 426-427(2012).

    [62] ZHENG Q, JOCKUSCH S, ZHOU Z et al. The contribution of reactive oxygen species to the photobleaching of organic fluorophores[J]. Photochemistry and Photobiology, 90, 448-454(2013).

    [63] YANG Z, LI L, LING J et al. Cyclooctatetraene-conjugated cyanine mitochondrial probes minimize phototoxicity in fluorescence and nanoscopic imaging[J]. Chemical Science, 11, 8506-8516(2020).

    [64] LI L, SUN H. Next generation of small-molecule fluorogenic probes for bioimaging[J]. Biochemistry, 59, 216-217(2019).

    Tools

    Get Citation

    Copy Citation Text

    Lin LI, Duoteng ZHANG, Yunwei QU. Structure and Biomedical Applications of Small Molecular Super-resolution Fluorescent Imaging Dyes(Invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851509

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for the 60th Anniversary of XIOPM of CAS, and the 50th Anniversary of the Acta Photonica Sinica Ⅱ

    Received: Jun. 6, 2022

    Accepted: Jul. 12, 2022

    Published Online: Oct. 25, 2022

    The Author Email:

    DOI:10.3788/gzxb20225108.0851509

    Topics