Journal of Quantum Optics, Volume. 30, Issue 4, 40901(2024)
Effect of Exciton Concentration on the Organic Magnetic Effect of Bulk Heterojunction Type OLEDs
[1] [1] TANG C W, VANSLYKE S A. Organic electroluminescent diodes[J]. Appl Phys Lett, 1987, 51: 913‒915. DOI: https://doi.org/10.1063/1.98799.
[2] [2] NICOLAI H T, HOF A, OOSTHOEK J L M, et al. Charge transport and recombination in polyspirobifluorene blue light-emitting diodes[J]. Adv Funct Mater, 2011, 21: 1505‒1510. DOI: https://doi.org/10.1002/adfm.201002293.
[3] [3] SALEHI A, FU X, SHIN D, et al. Recent advances in OLED optical design[J]. Adv Funct Mater, 2019, 29: 1808803. DOI: https://doi.org/10.1002/adfm.201808803.
[4] [4] KALINOWSKI J, COCCHI M, VIRGILI D, et al. Magnetic field effects on emission and current in Alq3-based electroluminescent diodes[J]. Chem Phys Lett, 2003, 380: 710‒715. DOI: https://doi.org/10.1016/j.cplett.2003.09.086.
[5] [5] FRANCIS T L, MERMER, VEERARAGHAVAN G, et al. Large magnetoresistance at room-temperature in semiconducting polymer sandwich devices[J]. New J Phys, 2004, 6: 185. DOI: https://doi.org/10.1088/1367-2630/6/1/185.
[6] [6] HU B, YAN L, SHAO M. Magnetic-field effects in organic semiconducting materials and devices[J]. Adv Mater, 2010, 21: 1500‒1516. DOI: https://doi.org/10.1002/adma.200802386.
[7] [7] ZHANG T, HOLFORD D F, GU H, et al. Hole-exciton interaction induced high field decay of magneto-electroluminescence in Alq3-based organic light-emitting diodes at room temperature[J]. Appl Phys Lett, 2016, 108: 023303. DOI: https://doi.org/10.1063/1.4939871.
[9] [9] NIU L, ZHANG Y, CHEN L, et al. Intersystem crossing effects on spin mixing in exciplex-based organic light-emitting devices[J]. Organic Electronics, 2020, 87: 105971. DOI: https://doi.org/10.1016/j.orgel.2020.105971.
[10] [10] TANG X, PAN R, ZHAO X, et al. Full confinement of high-lying triplet states to achieve high-level reverse intersystem crossing in rubrene: a strategy for obtaining the record-high EQE of 16.1% with low efficiency roll-off[J]. Adv Funct Mater, 2020, 30: 2005765. DOI: https://doi.org/10.1002/adfm.202005765.
[12] [12] LIU C H, CHEN Z, DU H T, et al. Energy Gain and Loss Processes in OLEDs with Spacer-Separated Electron-Hole Pairs Investigated by Magnetic Field Effects[J]. Adv Opt Mater, 2024, 12: 202302192. DOI: https://doi.org/10.1002/adom.202302192.
[14] [14] LEE H, KIM T. Unraveling the Degradation Pathways in Deep Blue Phosphorescent OLEDs Depending on Charge Dynamics: Insights from Numerical Analysis and Magneto-Electroluminescence Characterization[J]. ACS Appl Mater Interfaces, 2024, 16: 26468‒26477. DOI: https://doi.org/10.1021/acsami.4c05175.
[15] [15] LIU C H, DU H T, YU Y, et al. Dynamics of electron-hole pairs in interface exciplex OLEDs investigated by magnetic field effects[J]. Org Electron, 2024, 128: 107025. DOI: https://doi.org/10.1016/j.orgel.2024.107025.
[17] [17] CHEN Q, JIA W, CHEN L, et al. Determining the origin of half-bandgap-voltage electroluminescence in bifunctional rubrene/C60 devices[J]. Scientific Reports, 2016, 6(1): 1‒9. DOI: https://doi.org/10.1038/srep25331.
[18] [18] YUAN P, GUO X, QIAO X, et al. Improvement of the Electroluminescence Performance of Exciplex-Based OLEDs by Effective Utilization of Long-Range Coupled Electron-Hole Pairs[J]. Advanced Optical Materials, 2019, 7(9): 180164. DOI: https://doi.org/10.1002/adom.201801648.
[19] [19] HONG L, YAO H, CUI Y, et al. 18.5% efficiency organic solar cells with a hybrid planar/bulk heterojunction[J]. Advanced Materials, 2021, 33(43): 2103091. DOI: https://doi.org/10.1002/adma.202103091.
[20] [20] NARRA S, TSAI S E, AWASTHI K, et al. Photoluminescence of P3HT: PCBM bulk heterojunction thin films and effect of external electric field[J]. Journal of the Chinese Chemical Society, 2022, 69(1): 140‒151. DOI: https://doi.org/10.1002/jccs.202100267.
[21] [21] KERSTEN S P, SCHELLEKENS A J, KOOPMANS B, et al. Magnetic-field dependence of the electroluminescence of organic light-emitting diodes: a competition between exciton formation and spin mixing[J]. Phys Rev Lett, 2011, 106: 197402. DOI: https://doi.org/10.1103/PhysRevLett.106.197402.
[22] [22] WANG Y, NING Y R, WU F J, et al. Observation of reverse intersystem-crossing from the upper-level triplet to lowest singlet excitons (T2→S1) in tetra(t-butyl)rubrene-based OLEDs for enhanced light-emission [J]. Adv Funct Mater, 2022, 32: 2202882. DOI: https://doi.org/10.1002/adfm.202202882.
[23] [23] SHAO M, YAN L, LI M X, et al. Triplet-charge annihilation versus triplet-triplet annihilation in organic semiconductors[J]. J Mater Chem C, 2013, 1: 1330‒1336. DOI: https://doi.org/10.1039/C2TC00329E.
[26] [26] BRUNO, MAURO A, NENNA G, et al. Insights on photophysical proprieties of DCM dye in PVK host matrix[J]. Polym Compos, 2013, 34: 1500‒1505. DOI: https://doi.org/10.1002/pc.22441.
[28] [28] EHRENFREUND E, VARDENY Z V. Effects of magnetic field on conductance and electroluminescence in organic devices[J]. Isr J Chem, 2012, 52: 552‒562. DOI: https://doi.org/10.1002/ijch.201100120.
[29] [29] HU B, WU Y. Tuning magnetoresistance between positive and negative values in organic semiconductors[J]. Nat Mater, 2007, 6: 985‒991. DOI: https://doi.org/10.1038/nmat2034.
[30] [30] SHARMA R K, KATIYAR M, RAO I V K, et al. Effect of the electric field during annealing of organic light emitting diodes for improving its on/off ratio[J]. Phys Chem Chem Phys, 2016, 18: 2747‒2755. DOI: https://doi.org/10.1039/C5CP06637A.
[31] [31] GARDITZ C, MUCKL A G, COLLE M. Influence of an external magnetic field on the singlet and triplet emissions of tris-(8-hydroxyquinoline) aluminum (III) (Alq3)[J]. J Appl Phys, 2005, 98: 104507. DOI: https://doi.org/10.1063/1.2132512.
[32] [32] LEI Y L, ZHANG Y, LIU R, et al. Driving current and temperature dependent magnetic-field modulated electroluminescence in Alq3-based organic light emitting diode[J]. Org Electron, 2009, 10: 889‒894. DOI: https://doi.org/10.1016/j.orgel.2009.04.016.
[34] [34] TANG X, HU Y, JIA W, et al. Intersystem crossing and triplet fusion in singlet-fission-dominated Rubrene-based OLEDs under high bias current[J]. Acs Appl Mater Inter, 2018, 10: 1948‒1956. DOI: https://doi.org/10.1021/acsami.7b17695.
[35] [35] XIANG J, CHEN Y, YUAN D, et al. Abnormal temperature dependent behaviors of intersystem crossing and triplet-triplet anni-hilation in organic planar heterojunction devices[J]. Appl Phys Lett, 2016, 109: 103301. DOI: https://doi.org/10.1063/1.4962297.
Get Citation
Copy Citation Text
WANG Zhi-qi, WANG Kai, WANG Xiao-jun, CHEN Xiao-wei, BAI Xin-ai, QIU Yan-er, ZHANG Chen-rui, XUE Li-li. Effect of Exciton Concentration on the Organic Magnetic Effect of Bulk Heterojunction Type OLEDs[J]. Journal of Quantum Optics, 2024, 30(4): 40901
Category:
Received: Jul. 15, 2024
Accepted: Feb. 26, 2025
Published Online: Feb. 26, 2025
The Author Email: WANG Zhi-qi (20011028@llu.edu.cn)