Acta Optica Sinica, Volume. 37, Issue 3, 314002(2017)
Discharge Uniformity and Impedance Matching of Multi-Group Electrodes for 3 kW Radio Frequency Slab CO2 Lasers
[1] [1] Strohschein J D, Bilida W D, Seguin H J J, et al. Enhancing discharge uniformity in a multi-kilowatt radio frequency excited CO2 slab array[J]. Appl Phys Lett, 1996, 68(8): 1043-1045.
[2] [2] Lapucci A, Cangioli G. Phase-locked operation of a compact three-slab-sections radiofrequency discharge CO2 laser[J]. IEEE J Quantum Elect, 1993, 29(12): 2962-2971.
[3] [3] Rao Hengrui. Analysis and design of electrode structure for high power slab waveguide CO2 laser[D]. Wuhan: Huazhong University of Science & Technology, 2008.
[5] [5] Hall D R, Baker H J, Villarreal F. High power RF excited planar waveguide carbon dioxide lasers for microprocessing applications[C]. SPIE, 2003, 5120: 23-29.
[7] [7] Yang Weihong, Yuan Jinkun, Wang Du, et al. Study on electrode waveguide dielectric film for high power radio frequency slab CO2 Laser[J]. Chinese J Lasers, 2015, 42(1): 0107001.
[8] [8] Wang Wei, Tang Xiahui, Qin Yingxiong, et al. Influence of resonator mirror surfaces on output mode of radio frequency slab CO2 lasers[J]. Chinese J Lasers, 2016, 43(4): 0402004.
[9] [9] Zhao Lin, Susumu T, Zhang Yan, et al. Distribution of wire feeding elements in laser-arc hybrid welds[J]. Chinese J Lasers, 2015, 42(4): 0406006.
[10] [10] Vitruk P P, Baker H J, Hall D R. The characteristics and stability of high power transverse radio frequency discharges for waveguide CO2 slab laser excitation[J]. J Phys D Appl Phys, 1992, 25(12): 1767-1776.
[11] [11] Strohschein J D, Bailida W D, Seguin H J J, et al. Computational model of longitudinal discharge uniformity in RF-excited CO2 slab lasers[J]. IEEE J Quantum Elect, 1996, 32(8): 1289-1298.
[12] [12] Liu Juan. Research on exciting characteristics of high power radio-frequency CO2 laser[D]. Wuhan: Huazhong University of Science & Technology, 2009.
[13] [13] Lapucci A, Mascalchi S, Ringressi R. Parameters affecting the power distribution in the radio frequency discharge of large-area diffusion-cooled CO2 lasers[J]. IEEE J Quantum Elect, 1998, 34(4): 616-621.
[14] [14] Ge Debiao, Yan Yubo. Finite-difference time-domain method for electromagnetic waves engineering[M]. 2nd ed. Xi′an: Xidian University Press, 2005.
[15] [15] Weiland T. On the numerical solution of Maxwell′s equations and applications in the field of accelerator physics[J]. Particle Accelerators, 1984, 15(4): 245-292.
[16] [16] Spindler G. Two-dimensional computational model of discharge uniformity in radio-frequency-excited CO2 slab lasers with high aspect ratio electrodes[J]. IEEE J Quantum Elect, 2003, 39(2): 343-349.
[17] [17] Xiao Longsheng, Tang Xiahui, Qin Yingxiong, et al. Shaping characteristics of output beam of 2 kW radio frequency slab CO2 laser[J]. Chinese J Lasers, 2014, 41(4): 0402008.
Get Citation
Copy Citation Text
Wang Zhen, Peng Hao, Wang Wei, Wu Chao, Tang Xiahui. Discharge Uniformity and Impedance Matching of Multi-Group Electrodes for 3 kW Radio Frequency Slab CO2 Lasers[J]. Acta Optica Sinica, 2017, 37(3): 314002
Category: Lasers and Laser Optics
Received: Nov. 14, 2016
Accepted: --
Published Online: Mar. 8, 2017
The Author Email: Zhen Wang (15327261057@163.com)