Acta Laser Biology Sinica, Volume. 30, Issue 3, 200(2021)

Surface-enhanced Raman Scattering Sensing of Bioactive Bacteria Based on Rambutan-like Au@Ag Alloy Nanostructure

ZHANG Meng1, CHEN Dongzhen2、*, NING Pan3, REN Yanwei2, LI Yang2, and ZHANG Liang2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(24)

    [1] [1] CHA M G, LEE S, PARK S, et al. A dual modal silver bumpy nanoprobe for photoacoustic imaging and SERS multiplexed identification of in vivo lymph nodes[J]. Nanoscale, 2017, 9(34): 12556-12564.

    [2] [2] CECCHINI M P, TUREK V A, PAGET J, et al. Self-assembled nanoparticle arrays for multiphase trace analyte detection[J]. Nature Materials, 2013, 12(2): 165-171.

    [3] [3] CHEN D Z, SONG Z X, CHEN F, et al. Simply controllable growth of single crystal plasmonic Au-Ag nano-spines with anisotropic multiple sites for highly sensitive and uniform surface-enhanced Raman scattering sensing[J]. RSC Advances, 2016, 6(70): 66056-66065.

    [4] [4] KELLY J, PATRICK R, PATRICK S, et al. Surface-enhanced Raman spectroscopy for the detection of a metabolic product in the headspace above live bacterial cultures[J]. Angewandte Chemie (International Edition in English), 2018, 57(48): 15686-15690.

    [5] [5] CHEN D Z, NING P, ZHANG Y, et al. Ta@Ag porous array with high stability and biocompatibility for SERS sensing of bacteria[J]. ACS Applied Materials & Interfaces, 2020, 12(17): 20138-20144.

    [6] [6] CHEN D Z, ZHU X D, HUANG J, et al. Polydopamine@Gold nanowaxberry enabling improved SERS sensing of pesticides, pollutants, and explosives in complex samples[J]. Analytical Chemistry, 2018, 90(15): 9048-9054.

    [7] [7] YAN J F, WANG G, WANG H, et al. Preparation and electrochemical performance of bramble-like ZnO array as anode materials for lithium-ion batteries[J]. Journal of Nanoparticle Research, 2015, 17(1): 52.

    [8] [8] MA C, GAO Q Q, HONG W, et al. Real-time probing nanopore-in-nanogap plasmonic coupling effect on silver supercrystals with surface-enhanced Raman spectroscopy[J]. Advanced Functional Materials, 2016, 27(2): 1603233.

    [9] [9] LIU K, BAI Y C, ZHANG L, et al. Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis[J]. Nano Letters, 2016, 16(6): 3675-3681.

    [10] [10] CHEN H Y, LIN M H, WANG C Y, et al. Large-scale hot spot engineering for quantitative SERS at the single-molecule scale[J]. Journal of the American Chemical Society, 2015, 137(42): 13698-13705.

    [11] [11] WALL M A, HARMSEN S, PAL S, et al. Surfactant-free shape control of gold nanoparticles enabled by unified theoretical framework of nanocrystal synthesis[J]. Advanced Materials, 2017, 29(21): 1605622.

    [12] [12] LIU Z, YANG Z B, PENG B, et al. Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins[J]. Advanced Materials, 2014, 26(15): 2431-2439.

    [13] [13] LIU M Z, GUYOT-SIONNEST P. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids[J]. Journal of Physical Chemistry B, 2005, 109(47): 22192-22200.

    [14] [14] LIU Z, ZHANG F L, YANG Z B, et al. Gold mesoparticles with precisely controlled surface topographies for single-particle surface-enhanced Raman spectroscopy[J]. Journal of Materials Chemistry C, 2013, 1(35): 5567-5576.

    [15] [15] MICHELY T, HOHAGE M, BOTT M, et al. Inversion of growth speed anisotropy in two dimensions[J]. Physical Review Letters, 1993, 70(25): 3943-3946.

    [16] [16] YOU H J, YANG S C, DING B J, et al. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications[J]. Chemical Society Reviews, 2013, 42(7): 2880-2904.

    [17] [17] SONG H, AHMAD NOR Y, YU M H, et al. Silica nanopollens enhance adhesion for long-term bacterial inhibition[J]. Journal of the American Chemical Society, 2016, 138(20): 6455-6462.

    [18] [18] LIM B, XIA Y N. Metal nanocrystals with highly branched morphologies[J]. Angewandte Chemie (International Edition in English), 2011, 50(1): 76-85.

    [19] [19] WANG H Y, ZHOU Y F, JIANG X X, et al. Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip[J]. Angewandte Chemie (International Edition in English), 2015, 54(17): 5132-5136.

    [20] [20] NAJA G, BOUVRETTE P, CHAMPAGNE J, et al. Activation of nanoparticles by biosorption for E. coli detection in milk and apple juice[J]. Applied Biochemistry and Biotechnology, 2010, 162(2): 460-475.

    [21] [21] YANG D T, ZHOU H B, HAISCH C, et al. Reproducible E. coli detection based on label-free SERS and mapping[J]. Talanta, 2016, 146: 457-463.

    [22] [22] FANG T, SHANG W H, LIU C, et al. Nondestructive identification and accurate isolation of single cells through a chip with Raman optical tweezers[J]. Analytical Chemistry, 2019, 91(15): 9932-9939.

    [23] [23] LIN C C, YANG Y M, LIAO P H, et al. A filter-like AuNPs@MS SERS substrate for Staphylococcus aureus detection[J]. Biosensors & Bioelectronics, 2014, 53: 519-527.

    [24] [24] CHEN D Z, ZHANG L, NING P, et al. In situ growth of gold nanoparticles on electrospun flexible multilayered PVDF nanofibers for SERS sensing of molecules and bacteria[J]. Nano Research, 2021, https://doi.org/10.1007/s12274-021-3530-9.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Meng, CHEN Dongzhen, NING Pan, REN Yanwei, LI Yang, ZHANG Liang. Surface-enhanced Raman Scattering Sensing of Bioactive Bacteria Based on Rambutan-like Au@Ag Alloy Nanostructure[J]. Acta Laser Biology Sinica, 2021, 30(3): 200

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 25, 2021

    Accepted: --

    Published Online: Sep. 1, 2021

    The Author Email: Dongzhen CHEN (Chendz365@xpu.edu.cn)

    DOI:10.3969/j.issn.1007-7146.2021.03.002

    Topics