Acta Optica Sinica, Volume. 42, Issue 11, 1134017(2022)

Optical Design of X-Ray Resonant Cavity Based on Crystal Bragg Mirrors

Zhiyuan Zhang1,2, Chen Wu1, Nanshun Huang1,2, Li Song1,3, Zengyan Zhang1,3, Xiaohao Dong1,3、*, Haixiao Deng1,3, and Jie Wang1,3
Author Affiliations
  • 1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
  • show less
    Figures & Tables(10)
    Schematic diagram of X-ray resonant cavity
    Layout of optical components in resonant cavity system
    Periodic distribution of radiation beam propagating in resonant cavity
    m varying with spacing and focal length of CRL and local magnification
    Bragg reflectivity and transmissivity curves of (0 0 0 30) plane under different d. (a) d=de; (b) d=3de; (c) d=10de; (d) d=100de
    • Table 1. Parameters of undulator, electron beam and FEL-I source

      View table

      Table 1. Parameters of undulator, electron beam and FEL-I source

      ParameterValue
      Ebeam /GeV8
      λμ /cm2.6
      Nμ3000
      νe /MHz1
      FWHM of source size /μm50
      FWHM of source divergence /μrad1.3
      Pulse energy /μJ34
    • Table 2. Parameters of resonant cavity system

      View table

      Table 2. Parameters of resonant cavity system

      Parameter100 m110 m120 m
      LR /m300300300
      f /m51.757.262.5
      R /μm172.37190.70208.38
      R0 /μm541.32569.38595.18
      TP0.93310.93310.9331
      s1 /m505560
      s2 /m252015
      ZR1 /m121212
      ZR3 /m188.5202.9228.0
    • Table 3. Optical tracing simulation results of beam spot size and emittance at each element location in one propagation period when S=100 m

      View table

      Table 3. Optical tracing simulation results of beam spot size and emittance at each element location in one propagation period when S=100 m

      ParameterUndulatorC1Resonant cavityC2Undulator
      FWHM of x /μm50.0064.9147.8886.0844.20
      FWHM of z /μm50.0064.1548.1384.4242.69
      FWHM of x' /μrad1.300.961.330.932.02
      FWHM of z' /μrad1.300.921.360.851.97
    • Table 4. Optical tracing simulation results of beam spot size and emittance at each element location in one propagation period when S=110 m

      View table

      Table 4. Optical tracing simulation results of beam spot size and emittance at each element location in one propagation period when S=110 m

      ParameterUndulatorC1Resonant cavityC2Undulator
      FWHM of x /μm50.0069.4946.97105.3340.71
      FWHM of z /μm50.0071.0547.30102.9037.70
      FWHM of x' /μrad1.300.871.470.812.23
      FWHM of z' /μrad1.300.871.470.782.27
    • Table 5. Optical tracing simulation results of beam spot size and emittance at each element location in one propagation period when S=120 m

      View table

      Table 5. Optical tracing simulation results of beam spot size and emittance at each element location in one propagation period when S=120 m

      ParameterUndulatorC1Resonant cavityC2Undulator
      FWHM of x /μm50.0076.9048.57115.5640.12
      FWHM of z /μm50.0076.5544.60112.6837.34
      FWHM of x' /μrad1.300.791.540.722.45
      FWHM of z' /μrad1.300.801.520.692.37
    Tools

    Get Citation

    Copy Citation Text

    Zhiyuan Zhang, Chen Wu, Nanshun Huang, Li Song, Zengyan Zhang, Xiaohao Dong, Haixiao Deng, Jie Wang. Optical Design of X-Ray Resonant Cavity Based on Crystal Bragg Mirrors[J]. Acta Optica Sinica, 2022, 42(11): 1134017

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: X-Ray Optics

    Received: Feb. 9, 2022

    Accepted: Apr. 18, 2022

    Published Online: Jun. 3, 2022

    The Author Email: Dong Xiaohao (dongxiaohao@zjlab.org.cn)

    DOI:10.3788/AOS202242.1134017

    Topics