Chinese Journal of Liquid Crystals and Displays, Volume. 35, Issue 7, 762(2020)

Progress of liquid crystal based terahertz wavefront modulators

SHEN Yan-chun1,2、*, WANG Jin-lan1, WANG Qiao-lian1, SHEN Zhi-xiong2, and HU Wei2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(212)

    [1] [1] TONOUCHI M. Cutting-edge terahertz technology [J]. Nat. Photonics, 2007, 1(2): 97-105.

              TONOUCHI M. Cutting-edge terahertz technology [J]. Nat. Photonics, 2007, 1(2): 97-105.

    [2] [2] FERGUSON B, ZHANG X C. Materials for terahertz science and technology [J]. Nat. Mater., 2002, 1(1): 26-33.

              FERGUSON B, ZHANG X C. Materials for terahertz science and technology [J]. Nat. Mater., 2002, 1(1): 26-33.

    [3] [3] GUO X G, CAO J C, ZHANG R, et al. Recent progress in terahertz quantum-well photodetectors [J]. IEEE J. Sel. Top. Quant. Electron., 2013, 19(1): 8500508.

              GUO X G, CAO J C, ZHANG R, et al. Recent progress in terahertz quantum-well photodetectors [J]. IEEE J. Sel. Top. Quant. Electron., 2013, 19(1): 8500508.

    [4] [4] MARKELZ A G, ROITBERG A, HEILWEIL E J. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz [J]. Chem. Phys. Lett., 2000, 320(1/2): 42-48.

              MARKELZ A G, ROITBERG A, HEILWEIL E J. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz [J]. Chem. Phys. Lett., 2000, 320(1/2): 42-48.

    [5] [5] DUVILLARET L, GARET F, COUTAZ J L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy [J]. IEEE J. Sel. Top. Quant. Electron., 1996, 2(3): 739-746.

              DUVILLARET L, GARET F, COUTAZ J L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy [J]. IEEE J. Sel. Top. Quant. Electron., 1996, 2(3): 739-746.

    [6] [6] KLEINE-OSTMANN T, NAGATSUMA T. A review on terahertz communications research [J]. J. Infrared Millim. Terahertz Waves, 2011, 32(2): 143-171.

              KLEINE-OSTMANN T, NAGATSUMA T. A review on terahertz communications research [J]. J. Infrared Millim. Terahertz Waves, 2011, 32(2): 143-171.

    [7] [7] ZHAO J Y, CHU W, GUO L J, et al. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air [J]. Sci. Rep., 2014, 4: 3880.

              ZHAO J Y, CHU W, GUO L J, et al. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air [J]. Sci. Rep., 2014, 4: 3880.

    [8] [8] RAHMAN A, RAHMAN A K, RAO B. Early detection of skin cancer via terahertz spectral profiling and 3D imaging [J]. Biosens. Bioelectron., 2016, 82: 64-70.

              RAHMAN A, RAHMAN A K, RAO B. Early detection of skin cancer via terahertz spectral profiling and 3D imaging [J]. Biosens. Bioelectron., 2016, 82: 64-70.

    [9] [9] REDO-SANCHEZ A, LAMAN N, SCHULKIN B, et al. Review of terahertz technology readiness assessment and applications [J]. J. Infrared Millim. Terahertz Waves, 2013, 34(9): 500-518.

              REDO-SANCHEZ A, LAMAN N, SCHULKIN B, et al. Review of terahertz technology readiness assessment and applications [J]. J. Infrared Millim. Terahertz Waves, 2013, 34(9): 500-518.

    [10] [10] HEYMAN J N, NEOCLEOUS P, HEBERT D, et al. Terahertz emission from GaAs and InAs in a magnetic field [J]. Phys. Rev. B, 2001, 64(8): 085202.

              HEYMAN J N, NEOCLEOUS P, HEBERT D, et al. Terahertz emission from GaAs and InAs in a magnetic field [J]. Phys. Rev. B, 2001, 64(8): 085202.

    [11] [11] SHALABY M, HAURI C P. Spectrally intense terahertz source based on triangular Selenium [J]. Sci. Rep., 2015, 5: 8059.

              SHALABY M, HAURI C P. Spectrally intense terahertz source based on triangular Selenium [J]. Sci. Rep., 2015, 5: 8059.

    [12] [12] TONG J Y, MUTHEE M, CHEN S Y, et al. Antenna enhanced graphene THz emitter and detector [J]. Nano Lett., 2015, 15(8): 5295-5301.

              TONG J Y, MUTHEE M, CHEN S Y, et al. Antenna enhanced graphene THz emitter and detector [J]. Nano Lett., 2015, 15(8): 5295-5301.

    [13] [13] KAWANO Y, ISHIBASHI K. An on-chip near-field terahertz probe and detector [J]. Nat. Photonics, 2008, 2(10): 618-621.

              KAWANO Y, ISHIBASHI K. An on-chip near-field terahertz probe and detector [J]. Nat. Photonics, 2008, 2(10): 618-621.

    [14] [14] CAI X H, SUSHKOV A B, SUESS R J, et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene [J]. Nat. Nanotechnol., 2014, 9(10): 814-819.

              CAI X H, SUSHKOV A B, SUESS R J, et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene [J]. Nat. Nanotechnol., 2014, 9(10): 814-819.

    [15] [15] MITTENDORFF M, WINNERL S, KAMANN J, et al. Ultrafast graphene-based broadband THz detector [J]. Appl. Phys. Lett., 2013, 103(2): 021113.

              MITTENDORFF M, WINNERL S, KAMANN J, et al. Ultrafast graphene-based broadband THz detector [J]. Appl. Phys. Lett., 2013, 103(2): 021113.

    [16] [16] KAWADA Y, YASUDA T, NAKANISHI A, et al. Achromatic prism-type wave plate for broadband terahertz pulses [J]. Opt. Lett., 2014, 39(9): 2794-2797.

              KAWADA Y, YASUDA T, NAKANISHI A, et al. Achromatic prism-type wave plate for broadband terahertz pulses [J]. Opt. Lett., 2014, 39(9): 2794-2797.

    [17] [17] ZHANG L L, ZHONG H, DENG C, et al. Terahertz wave polarization analyzer using birefringent materials [J]. Opt. Express, 2009, 17(22): 20266-20271.

              ZHANG L L, ZHONG H, DENG C, et al. Terahertz wave polarization analyzer using birefringent materials [J]. Opt. Express, 2009, 17(22): 20266-20271.

    [18] [18] SAHA S C, MA Y, GRANT J P, et al. Fabrication of silicon quarter wave plate at Terahertz frequency [C]//Proceedings of 2010 IEEE Photonics Society Winter Topicals Meeting Series. Majorca, Spain: IEEE, 2010: 38-39.

              SAHA S C, MA Y, GRANT J P, et al. Fabrication of silicon quarter wave plate at Terahertz frequency [C]//Proceedings of 2010 IEEE Photonics Society Winter Topicals Meeting Series. Majorca, Spain: IEEE, 2010: 38-39.

    [19] [19] CLARK N A, LAGERWALL S T. Submicrosecond bistable electro-optic switching in liquid crystals [J]. Appl. Phys. Lett., 1980, 36(11): 899-901.

              CLARK N A, LAGERWALL S T. Submicrosecond bistable electro-optic switching in liquid crystals [J]. Appl. Phys. Lett., 1980, 36(11): 899-901.

    [20] [20] WILK R, VIEWEG N, KOPSCHINSKI O, et al. Liquid crystal based electrically switchable Bragg structure for THz waves [J]. Opt. Express, 2009, 17(9): 7377-7382.

              WILK R, VIEWEG N, KOPSCHINSKI O, et al. Liquid crystal based electrically switchable Bragg structure for THz waves [J]. Opt. Express, 2009, 17(9): 7377-7382.

    [21] [21] OH-E M, YOKOYAMA H, KOEBERG M, et al. High-frequency dielectric relaxation of liquid crystals: THz time-domain spectroscopy of liquid crystal colloids [J]. Opt. Express, 2006, 14(23): 11433-11441.

              OH-E M, YOKOYAMA H, KOEBERG M, et al. High-frequency dielectric relaxation of liquid crystals: THz time-domain spectroscopy of liquid crystal colloids [J]. Opt. Express, 2006, 14(23): 11433-11441.

    [22] [22] YUAN Y H, HE J, LIU J S, et al. Electrically controlled broadband THz switch based on liquid-crystal-filled multi-layer metallic grating structures [J]. J. Phys.: Conf. Ser., 2011, 276(1): 012228.

              YUAN Y H, HE J, LIU J S, et al. Electrically controlled broadband THz switch based on liquid-crystal-filled multi-layer metallic grating structures [J]. J. Phys.: Conf. Ser., 2011, 276(1): 012228.

    [23] [23] REUTER M, ALTMANN K, VIEWEG N, et al. Highly birefringent liquid crystal at THz frequencies [C]//Proceedings of 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves. Wollongong, NSW, Australia: IEEE, 2012: 1-2.

              REUTER M, ALTMANN K, VIEWEG N, et al. Highly birefringent liquid crystal at THz frequencies [C]//Proceedings of 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves. Wollongong, NSW, Australia: IEEE, 2012: 1-2.

    [24] [24] WANG L, QIU H S, PHAN T N K, et al. Visible measurement of terahertz power based on capsulized cholesteric liquid crystal film [J]. Appl. Sci., 2018, 8(12): 2580.

              WANG L, QIU H S, PHAN T N K, et al. Visible measurement of terahertz power based on capsulized cholesteric liquid crystal film [J]. Appl. Sci., 2018, 8(12): 2580.

    [25] [25] CHEN C Y, TSAI T R, PAN C L, et al. Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals [J]. Appl. Phys. Lett., 2003, 83(22): 4497-4499.

              CHEN C Y, TSAI T R, PAN C L, et al. Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals [J]. Appl. Phys. Lett., 2003, 83(22): 4497-4499.

    [26] [26] CHEN C Y, HSIEH C F, LIN Y F, et al. Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter [J]. Opt. Express, 2004, 12(12): 2625-2630.

              CHEN C Y, HSIEH C F, LIN Y F, et al. Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter [J]. Opt. Express, 2004, 12(12): 2625-2630.

    [27] [27] CHEN C Y, PAN C L, HSIEH C F, et al. Liquid-crystal-based terahertz tunable Lyot filter [J]. Appl. Phys. Lett., 2006, 88(10): 101107.

              CHEN C Y, PAN C L, HSIEH C F, et al. Liquid-crystal-based terahertz tunable Lyot filter [J]. Appl. Phys. Lett., 2006, 88(10): 101107.

    [28] [28] HO I C, PAN C L, HSIEH C F, et al. Liquid-crystal-based terahertz tunable Solc filter [J]. Opt. Lett., 2008, 33(13): 1401-1403.

              HO I C, PAN C L, HSIEH C F, et al. Liquid-crystal-based terahertz tunable Solc filter [J]. Opt. Lett., 2008, 33(13): 1401-1403.

    [29] [29] HSIEH C F, LAI Y C, PAN R P, et al. Polarizing terahertz waves with nematic liquid crystals [J]. Opt. Lett., 2008, 33(11): 1174-1176.

              HSIEH C F, LAI Y C, PAN R P, et al. Polarizing terahertz waves with nematic liquid crystals [J]. Opt. Lett., 2008, 33(11): 1174-1176.

    [30] [30] YANG L, FAN F, CHEN M, et al. Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field [J]. Opt. Mater. Express, 2016, 6(9): 2803-2811.

              YANG L, FAN F, CHEN M, et al. Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field [J]. Opt. Mater. Express, 2016, 6(9): 2803-2811.

    [31] [31] LIN C J, LI Y T, HSIEH C F, et al. Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating [J]. Opt. Express, 2008, 16(5): 2995-3001.

              LIN C J, LI Y T, HSIEH C F, et al. Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating [J]. Opt. Express, 2008, 16(5): 2995-3001.

    [32] [32] YANG C S, CHANG C H, LIN M H, et al. THz conductivities of indium-tin-oxide nanowhiskers as a graded-refractive-index structure [J]. Opt. Express, 2012, 20(S4): A441-A451.

              YANG C S, CHANG C H, LIN M H, et al. THz conductivities of indium-tin-oxide nanowhiskers as a graded-refractive-index structure [J]. Opt. Express, 2012, 20(S4): A441-A451.

    [33] [33] YANG C S, TANG T T, PAN R P, et al. Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment [J]. Appl. Phys. Lett., 2014, 104(14): 141106.

              YANG C S, TANG T T, PAN R P, et al. Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment [J]. Appl. Phys. Lett., 2014, 104(14): 141106.

    [34] [34] KAKENOV N, TAKAN T, OZKAN V A, et al. Graphene-enabled electrically controlled terahertz spatial light modulators [J]. Opt. Lett., 2015, 40(9): 1984-1987.

              KAKENOV N, TAKAN T, OZKAN V A, et al. Graphene-enabled electrically controlled terahertz spatial light modulators [J]. Opt. Lett., 2015, 40(9): 1984-1987.

    [35] [35] YANF, PARROTT E P, LIU X D, et al. Low-cost and broad band terahertz antireflection coatings based on DMSO-doped PEDOT/PSS [J]. Opt. Lett., 2015, 40(12): 2886-2889.

              YANF, PARROTT E P, LIU X D, et al. Low-cost and broad band terahertz antireflection coatings based on DMSO-doped PEDOT/PSS [J]. Opt. Lett., 2015, 40(12): 2886-2889.

    [36] [36] WU Y, RUAN X Z, CHEN C H, et al. Graphene/liquid crystal based terahertz phase shifters [J]. Opt. Express, 2013, 21(18): 21395-21402.

              WU Y, RUAN X Z, CHEN C H, et al. Graphene/liquid crystal based terahertz phase shifters [J]. Opt. Express, 2013, 21(18): 21395-21402.

    [37] [37] DU Y, TIAN H, CUI X, et al. Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes [J]. J. Mater. Chem. C, 2016, 4(19): 4138-4142.

              DU Y, TIAN H, CUI X, et al. Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes [J]. J. Mater. Chem. C, 2016, 4(19): 4138-4142.

    [38] [38] YAN F, PARROTT E P J, UNG B S Y, et al. Solvent doping of PEDOT/PSS: effect on terahertz optoelectronic properties and utilization in terahertz devices [J]. J. Phys. Chem. C, 2015, 119(12): 6813-6818.

              YAN F, PARROTT E P J, UNG B S Y, et al. Solvent doping of PEDOT/PSS: effect on terahertz optoelectronic properties and utilization in terahertz devices [J]. J. Phys. Chem. C, 2015, 119(12): 6813-6818.

    [39] [39] HSIEH C F, PAN R P, TANG T T, et al. Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate [J]. Opt. Lett., 2006, 31(8): 1112-1114.

              HSIEH C F, PAN R P, TANG T T, et al. Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate [J]. Opt. Lett., 2006, 31(8): 1112-1114.

    [40] [40] LIU L M, SHADRIVOV I V, POWELL D A, et al. Temperature control of terahertz metamaterials with liquid crystals [J]. IEEE Trans. Terahertz Sci. Technol., 2013, 3(6): 827-831.

              LIU L M, SHADRIVOV I V, POWELL D A, et al. Temperature control of terahertz metamaterials with liquid crystals [J]. IEEE Trans. Terahertz Sci. Technol., 2013, 3(6): 827-831.

    [41] [41] KOWERDZIEJ R, OLIFIERCZUK M, PARKA J. Thermally induced tunability of a terahertz metamaterial by using a specially designed nematic liquid crystal mixture [J]. Opt. Express, 2018, 26(3): 2443-2452.

              KOWERDZIEJ R, OLIFIERCZUK M, PARKA J. Thermally induced tunability of a terahertz metamaterial by using a specially designed nematic liquid crystal mixture [J]. Opt. Express, 2018, 26(3): 2443-2452.

    [42] [42] LIN X W, WU J B, HU W, et al. Self-polarizing terahertz liquid crystal phase shifter [J]. AIP Adv., 2011, 1(3): 032133.

              LIN X W, WU J B, HU W, et al. Self-polarizing terahertz liquid crystal phase shifter [J]. AIP Adv., 2011, 1(3): 032133.

    [43] [43] ALTMANN K, REUTER M, GARBAT K, et al. Polymer stabilized liquid crystal phase shifter for terahertz waves [J]. Opt. Express, 2013, 21(10): 12395-12400.

              ALTMANN K, REUTER M, GARBAT K, et al. Polymer stabilized liquid crystal phase shifter for terahertz waves [J]. Opt. Express, 2013, 21(10): 12395-12400.

    [44] [44] YANG C S, TANG T T, CHEN P H, et al. Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes [J]. Opt. Lett., 2014, 39(8): 2511-2513.

              YANG C S, TANG T T, CHEN P H, et al. Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes [J]. Opt. Lett., 2014, 39(8): 2511-2513.

    [45] [45] BENOR A, TAKIZAWA S Y, PREZ-BOLVAR C, et al. Efficiency improvement of fluorescent OLEDs by tuning the working function of PEDOT∶PSS using UV-ozone exposure [J]. Org. Electron., 2010, 11(5): 938-945.

              BENOR A, TAKIZAWA S Y, PREZ-BOLVAR C, et al. Efficiency improvement of fluorescent OLEDs by tuning the working function of PEDOT∶PSS using UV-ozone exposure [J]. Org. Electron., 2010, 11(5): 938-945.

    [46] [46] WANG L, LIN X W, HU W, et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes [J]. Light Sci. Appl., 2015, 4(2): e253.

              WANG L, LIN X W, HU W, et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes [J]. Light Sci. Appl., 2015, 4(2): e253.

    [47] [47] WANG L, LIN X W, LIANG X, et al. Large birefringence liquid crystal material in terahertz range [J]. Opt. Mater. Express, 2012, 2(10): 1314-1319.

              WANG L, LIN X W, LIANG X, et al. Large birefringence liquid crystal material in terahertz range [J]. Opt. Mater. Express, 2012, 2(10): 1314-1319.

    [48] [48] WEI T, CHEN P, TANG M J, et al. Liquid-crystal-mediated active waveguides toward programmable integrated optics [J]. Adv. Opt. Mater., 2020, doi: 10.1002/adom.201902033.

              WEI T, CHEN P, TANG M J, et al. Liquid-crystal-mediated active waveguides toward programmable integrated optics [J]. Adv. Opt. Mater., 2020, doi: 10.1002/adom.201902033.

    [49] [49] WEI B Y, CHEN P, GE S J, et al. Liquid crystal depolarizer based on photoalignment technology [J]. Photonics Res., 2016, 4(2): 70-73.

              WEI B Y, CHEN P, GE S J, et al. Liquid crystal depolarizer based on photoalignment technology [J]. Photonics Res., 2016, 4(2): 70-73.

    [50] [50] SASAKI T, NODA K, KAWATSUKI N, et al. Universal polarization terahertz phase controllers using randomly aligned liquid crystal cells with graphene electrodes [J]. Opt. Lett., 2015, 40(7): 1544-1547.

              SASAKI T, NODA K, KAWATSUKI N, et al. Universal polarization terahertz phase controllers using randomly aligned liquid crystal cells with graphene electrodes [J]. Opt. Lett., 2015, 40(7): 1544-1547.

    [51] [51] JI Y Y, FAN F, WANG X H, et al. Broadband controllable terahertz quarter-wave plate based on graphene gratings with liquid crystals [J]. Opt. Express, 2018, 26(10): 12852-12862.

              JI Y Y, FAN F, WANG X H, et al. Broadband controllable terahertz quarter-wave plate based on graphene gratings with liquid crystals [J]. Opt. Express, 2018, 26(10): 12852-12862.

    [52] [52] YANG C S, SHIH F C, PAN R P, et al. Liquid-crystal-enabled electrically tunable terahertz achromatic-wave plate [C]//Proceedings of 2016 41st International Conference on Infrared, Millimeter, and Terahertz Waves. Copenhagen, Denmark: IEEE, 2016: 1-2.

              YANG C S, SHIH F C, PAN R P, et al. Liquid-crystal-enabled electrically tunable terahertz achromatic-wave plate [C]//Proceedings of 2016 41st International Conference on Infrared, Millimeter, and Terahertz Waves. Copenhagen, Denmark: IEEE, 2016: 1-2.

    [53] [53] WANG L, GE S J, HU W, et al. Tunable reflective liquid crystal terahertz waveplates [J]. Opt. Mater. Express, 2017, 7(6): 2023-2029.

              WANG L, GE S J, HU W, et al. Tunable reflective liquid crystal terahertz waveplates [J]. Opt. Mater. Express, 2017, 7(6): 2023-2029.

    [54] [54] ZOGRAFOPOULOS D C, FERRARO A, ISIC G, et al. Tunable terahertz metamaterials based on nematic liquid crystals [C]//Proceedings of 2016 41st International Conference on Infrared, Millimeter, and Terahertz Waves. Copenhagen, Denmark: IEEE, 2016: 1-2.

              ZOGRAFOPOULOS D C, FERRARO A, ISIC G, et al. Tunable terahertz metamaterials based on nematic liquid crystals [C]//Proceedings of 2016 41st International Conference on Infrared, Millimeter, and Terahertz Waves. Copenhagen, Denmark: IEEE, 2016: 1-2.

    [55] [55] JI W, LEE C H, CHEN P, et al. Meta-q-plate for complex beam shaping [J]. Sci. Rep., 2016, 6: 25528.

              JI W, LEE C H, CHEN P, et al. Meta-q-plate for complex beam shaping [J]. Sci. Rep., 2016, 6: 25528.

    [56] [56] CHEN P, LU Y Q, HU W. Beam shaping via photopatterned liquid crystals [J]. Liq. Cryst., 2016, 43(13/15): 2051-2061.

              CHEN P, LU Y Q, HU W. Beam shaping via photopatterned liquid crystals [J]. Liq. Cryst., 2016, 43(13/15): 2051-2061.

    [57] [57] WEI B Y, HU W, MING Y, et al. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals [J]. Adv. Mater., 2014, 26(10): 1590-1595.

              WEI B Y, HU W, MING Y, et al. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals [J]. Adv. Mater., 2014, 26(10): 1590-1595.

    [58] [58] CHEN P, MA L L, HU W, et al. Chirality invertible superstructure mediated active planar optics [J]. Nat. Commun., 2019, 10(1): 2518.

              CHEN P, MA L L, HU W, et al. Chirality invertible superstructure mediated active planar optics [J]. Nat. Commun., 2019, 10(1): 2518.

    [59] [59] CHEN P, MA L L, DUAN W, et al. Digitalizing self-assembled chiral superstructures for optical vortex processing [J]. Adv. Mater., 2018, 30(10): 1705865.

              CHEN P, MA L L, DUAN W, et al. Digitalizing self-assembled chiral superstructures for optical vortex processing [J]. Adv. Mater., 2018, 30(10): 1705865.

    [60] [60] BERRY M V. The adiabatic phase and Pancharatnam's phase for polarized light [J]. J. Mod. Opt., 1987, 34(11): 1401-1407.

              BERRY M V. The adiabatic phase and Pancharatnam's phase for polarized light [J]. J. Mod. Opt., 1987, 34(11): 1401-1407.

    [62] [62] WU H, HU W, HU H C, et al. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system [J]. Opt. Express, 2012, 20(15): 16684-16689.

              WU H, HU W, HU H C, et al. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system [J]. Opt. Express, 2012, 20(15): 16684-16689.

    [63] [63] WEI B Y, LIU S, CHEN P, et al. Vortex Airy beams directly generated via liquid crystal q-Airy-plates [J]. Appl. Phys. Lett., 2018, 112(12): 121101.

              WEI B Y, LIU S, CHEN P, et al. Vortex Airy beams directly generated via liquid crystal q-Airy-plates [J]. Appl. Phys. Lett., 2018, 112(12): 121101.

    [64] [64] DUAN W, CHEN P, GE S J, et al. Helicity-dependent forked vortex lens based on photo-patterned liquid crystals [J]. Opt. Express, 2017, 25(13): 14059-14064.

              DUAN W, CHEN P, GE S J, et al. Helicity-dependent forked vortex lens based on photo-patterned liquid crystals [J]. Opt. Express, 2017, 25(13): 14059-14064.

    [65] [65] CHEN P, GE S J, DUAN W, et al. Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding [J]. ACS Photonics, 2017, 4(6): 1333-1338.

              CHEN P, GE S J, DUAN W, et al. Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding [J]. ACS Photonics, 2017, 4(6): 1333-1338.

    [66] [66] TANG M J, CHEN P, ZHANG W L, et al. Integrated and reconfigurable optical paths based on stacking optical functional films [J]. Opt. Express, 2016, 24(22): 25510-25514.

              TANG M J, CHEN P, ZHANG W L, et al. Integrated and reconfigurable optical paths based on stacking optical functional films [J]. Opt. Express, 2016, 24(22): 25510-25514.

    [67] [67] WEI B Y, CHEN P, GE S J, et al. Generation of self-healing and transverse accelerating optical vortices [J]. Appl. Phys. Lett., 2016, 109(12): 121105.

              WEI B Y, CHEN P, GE S J, et al. Generation of self-healing and transverse accelerating optical vortices [J]. Appl. Phys. Lett., 2016, 109(12): 121105.

    [68] [68] GE S J, CHEN P, SHEN Z X, et al. Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal [J]. Opt. Express, 2017, 25(11): 12349-12356.

              GE S J, CHEN P, SHEN Z X, et al. Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal [J]. Opt. Express, 2017, 25(11): 12349-12356.

    [69] [69] FRANKE-ARNOLD S, ALLEN L, PADGETT M. Advances in optical angular momentum [J]. Laser Photonics Rev., 2008, 2(4): 299-313.

              FRANKE-ARNOLD S, ALLEN L, PADGETT M. Advances in optical angular momentum [J]. Laser Photonics Rev., 2008, 2(4): 299-313.

    [70] [70] YAO A M, PADGETT M J. Orbital angular momentum: origins, behavior and applications [J]. Adv. Opt. Photonics, 2011, 3(2): 161-204.

              YAO A M, PADGETT M J. Orbital angular momentum: origins, behavior and applications [J]. Adv. Opt. Photonics, 2011, 3(2): 161-204.

    [71] [71] GE S J, SHEN Z X, CHEN P, et al. Generating, separating and polarizing terahertz vortex beams via liquid crystals with gradient-rotation directors [J]. Crystals, 2017, 7(10): 314.

              GE S J, SHEN Z X, CHEN P, et al. Generating, separating and polarizing terahertz vortex beams via liquid crystals with gradient-rotation directors [J]. Crystals, 2017, 7(10): 314.

    [72] [72] SHEN Z X, ZHOU S H, GE S J, et al. Liquid crystal tunable terahertz lens with spin-selected focusing property [J]. Opt. Express, 2019, 27(6): 8800-8807.

              SHEN Z X, ZHOU S H, GE S J, et al. Liquid crystal tunable terahertz lens with spin-selected focusing property [J]. Opt. Express, 2019, 27(6): 8800-8807.

    [73] [73] CHENG Q Q, MA M L, YU D, et al. Broadband achromatic metalens in terahertz regime [J]. Sci. Bull., 2019, 64(20): 1525-1531.

              CHENG Q Q, MA M L, YU D, et al. Broadband achromatic metalens in terahertz regime [J]. Sci. Bull., 2019, 64(20): 1525-1531.

    [74] [74] SHEN Z X, TANG M J, CHEN P, et al. Planar terahertz photonics mediated by liquid crystal polymers [J]. Adv. Opt. Mater., 2020, 8(7): 1902124.

              SHEN Z X, TANG M J, CHEN P, et al. Planar terahertz photonics mediated by liquid crystal polymers [J]. Adv. Opt. Mater., 2020, 8(7): 1902124.

    [75] [75] WANG L, XIAO R W, GE S J, et al. Research progress of terahertz liquid crystal materials and devices [J]. Acta Phys. Sin., 2019, 68(8): 084205. (in Chinese)

              WANG L, XIAO R W, GE S J, et al. Research progress of terahertz liquid crystal materials and devices [J]. Acta Phys. Sin., 2019, 68(8): 084205. (in Chinese)

    [76] [76] YEN T J, PADILLA W J, FANG N, et al. Terahertz magnetic response from artificial materials [J]. Science, 2004, 303(5663): 1494-1496.

              YEN T J, PADILLA W J, FANG N, et al. Terahertz magnetic response from artificial materials [J]. Science, 2004, 303(5663): 1494-1496.

    [77] [77] ZHANG S, PARK Y S, LI J, et al. Negative refractive index in chiral metamaterials [J]. Phys. Rev. Lett., 2009, 102(2): 023901.

              ZHANG S, PARK Y S, LI J, et al. Negative refractive index in chiral metamaterials [J]. Phys. Rev. Lett., 2009, 102(2): 023901.

    [78] [78] CAI W S, CHETTIAR U K, KILDISHEV A V, et al. Optical cloaking with metamaterials [J]. Nat. Photonics, 2007, 1(4): 224-227.

              CAI W S, CHETTIAR U K, KILDISHEV A V, et al. Optical cloaking with metamaterials [J]. Nat. Photonics, 2007, 1(4): 224-227.

    [79] [79] SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314(5801): 977-980.

              SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314(5801): 977-980.

    [80] [80] MA H F, CUI T J. Three-dimensional broadband ground-plane cloak made of metamaterials [J]. Nat. Commun., 2010, 1: 21.

              MA H F, CUI T J. Three-dimensional broadband ground-plane cloak made of metamaterials [J]. Nat. Commun., 2010, 1: 21.

    [81] [81] YANG Y H, JING L Q, ZHENG B, et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase [J]. Adv. Mater., 2016, 28(32): 6866-6871.

              YANG Y H, JING L Q, ZHENG B, et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase [J]. Adv. Mater., 2016, 28(32): 6866-6871.

    [82] [82] WEN D D, YUE F Y, LI G X, et al. Helicity multiplexed broadband metasurface holograms [J]. Nat. Commun., 2015, 6: 8241.

              WEN D D, YUE F Y, LI G X, et al. Helicity multiplexed broadband metasurface holograms [J]. Nat. Commun., 2015, 6: 8241.

    [83] [83] YAO Y, SHANKAR R, KATS M A, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators [J]. Nano Lett., 2014, 14(11): 6526-6532.

              YAO Y, SHANKAR R, KATS M A, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators [J]. Nano Lett., 2014, 14(11): 6526-6532.

    [84] [84] MANJAPPA M, PITCHAPPA P, SINGH N, et al. Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies [J]. Nat. Commun., 2018, 9(1): 4056.

              MANJAPPA M, PITCHAPPA P, SINGH N, et al. Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies [J]. Nat. Commun., 2018, 9(1): 4056.

    [85] [85] ZHAO X G, SCHALCH J, ZHANG J D, et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies [J]. Optica, 2018, 5(3): 303-310.

              ZHAO X G, SCHALCH J, ZHANG J D, et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies [J]. Optica, 2018, 5(3): 303-310.

    [86] [86] DRISCOLL T, KIM H T, CHAE B G, et al. Memory metamaterials [J]. Science, 2009, 325(5947): 1518-1521.

              DRISCOLL T, KIM H T, CHAE B G, et al. Memory metamaterials [J]. Science, 2009, 325(5947): 1518-1521.

    [87] [87] CHEN H T, PADILLA W J, ZIDE J M O, et al. Active terahertz metamaterial devices [J]. Nature, 2006, 444(7119): 597-600.

              CHEN H T, PADILLA W J, ZIDE J M O, et al. Active terahertz metamaterial devices [J]. Nature, 2006, 444(7119): 597-600.

    [88] [88] GU J Q, SINGH R, LIU X J, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials [J]. Nat. Commun., 2012, 3: 1151.

              GU J Q, SINGH R, LIU X J, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials [J]. Nat. Commun., 2012, 3: 1151.

    [89] [89] SAVO S, SHREKENHAMER D, PADILLA W J. Liquid crystal metamaterial absorber spatial light modulator for THz applications [J]. Adv. Opt. Mater., 2014, 2(3): 275-279.

              SAVO S, SHREKENHAMER D, PADILLA W J. Liquid crystal metamaterial absorber spatial light modulator for THz applications [J]. Adv. Opt. Mater., 2014, 2(3): 275-279.

    [90] [90] CHEN C C, CHIANG W F, TSAI M C, et al. Continuously tunable and fast-response terahertz metamaterials using in-plane-switching dual-frequency liquid crystal cells [J]. Opt. Lett., 2015, 40(9): 2021-2024.

              CHEN C C, CHIANG W F, TSAI M C, et al. Continuously tunable and fast-response terahertz metamaterials using in-plane-switching dual-frequency liquid crystal cells [J]. Opt. Lett., 2015, 40(9): 2021-2024.

    [91] [91] GU J Q, SINGH R, TIAN Z, et al. Terahertz superconductor metamaterial [J]. Appl. Phys. Lett., 2010, 97(7): 071102.

              GU J Q, SINGH R, TIAN Z, et al. Terahertz superconductor metamaterial [J]. Appl. Phys. Lett., 2010, 97(7): 071102.

    [92] [92] WU J B, JIN B B, WAN J, et al. Superconducting terahertz metamaterials mimicking electromagnetically induced transparency [J]. Appl. Phys. Lett., 2011, 99(16): 161113.

              WU J B, JIN B B, WAN J, et al. Superconducting terahertz metamaterials mimicking electromagnetically induced transparency [J]. Appl. Phys. Lett., 2011, 99(16): 161113.

    [93] [93] JU L, GENG B S, HORNG J, et al. Graphene plasmonics for tunable terahertz metamaterials [J]. Nat. Nanotechnol., 2011, 6(10): 630-634.

              JU L, GENG B S, HORNG J, et al. Graphene plasmonics for tunable terahertz metamaterials [J]. Nat. Nanotechnol., 2011, 6(10): 630-634.

    [94] [94] LEE S H, CHOI M, KIM T T, et al. Switching terahertz waves with gate-controlled active graphene metamaterials [J]. Nat. Mater., 2012, 11(11): 936-941.

              LEE S H, CHOI M, KIM T T, et al. Switching terahertz waves with gate-controlled active graphene metamaterials [J]. Nat. Mater., 2012, 11(11): 936-941.

    [95] [95] SHREKENHAMER D, CHEN W C, PADILLA W J. Liquid crystal tunable metamaterial absorber [J]. Phys. Rev. Lett., 2013, 110(17): 177403.

              SHREKENHAMER D, CHEN W C, PADILLA W J. Liquid crystal tunable metamaterial absorber [J]. Phys. Rev. Lett., 2013, 110(17): 177403.

    [96] [96] YANG L, FAN F, CHEN M, et al. Active terahertz metamaterials based on liquid-crystal induced transparency and absorption [J]. Opt. Commun., 2017, 382: 42-48.

              YANG L, FAN F, CHEN M, et al. Active terahertz metamaterials based on liquid-crystal induced transparency and absorption [J]. Opt. Commun., 2017, 382: 42-48.

    [97] [97] WANG L, GE S J, HU W, et al. Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber [J]. Opt. Express, 2017, 25(20): 23873-23879.

              WANG L, GE S J, HU W, et al. Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber [J]. Opt. Express, 2017, 25(20): 23873-23879.

    [98] [98] WANG J, TIAN H, WANG Y, et al. Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial [J]. Opt. Express, 2018, 26(5): 5769-5776.

              WANG J, TIAN H, WANG Y, et al. Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial [J]. Opt. Express, 2018, 26(5): 5769-5776.

    [99] [99] SHEN Z X, ZHOU S H, GE S J, et al. Liquid-crystal-integrated metadevice: towards active multifunctional terahertz wave manipulations [J]. Opt. Lett., 2018, 43(19): 4695-4698.

              SHEN Z X, ZHOU S H, GE S J, et al. Liquid-crystal-integrated metadevice: towards active multifunctional terahertz wave manipulations [J]. Opt. Lett., 2018, 43(19): 4695-4698.

    [100] [100] SHEN Z X, ZHOU S H, GE S J, et al. Liquid crystal enabled dynamic cloaking of terahertz Fano resonators [J]. Appl. Phys. Lett., 2019, 114(4): 041106.

              SHEN Z X, ZHOU S H, GE S J, et al. Liquid crystal enabled dynamic cloaking of terahertz Fano resonators [J]. Appl. Phys. Lett., 2019, 114(4): 041106.

    [101] [101] SAUTTER J, STAUDE I, DECKER M, et al. Active tuning of all-dielectric metasurfaces [J]. ACS Nano, 2015, 9(4): 4308-4315.

              SAUTTER J, STAUDE I, DECKER M, et al. Active tuning of all-dielectric metasurfaces [J]. ACS Nano, 2015, 9(4): 4308-4315.

    [102] [102] KOMAR A, FANG Z, BOHN J, et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals [J]. Appl. Phys. Lett., 2017, 110(7): 071109.

              KOMAR A, FANG Z, BOHN J, et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals [J]. Appl. Phys. Lett., 2017, 110(7): 071109.

    [103] [103] KOMAR A, PANIAGUA-DOMINGUEZ R, MIROSHNICHENKO A,et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces [J]. ACS Photonics, 2018, 5(5): 1742-1748.

              KOMAR A, PANIAGUA-DOMINGUEZ R, MIROSHNICHENKO A,et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces [J]. ACS Photonics, 2018, 5(5): 1742-1748.

    [104] [104] JAHANI S, JACOB Z. All-dielectric metamaterials [J].Nat. Nanotechnol., 2016, 11(1): 23-26.

              JAHANI S, JACOB Z. All-dielectric metamaterials [J].Nat. Nanotechnol., 2016, 11(1): 23-26.

    [105] [105] ZHANG H F, ZHANG X Q, XU Q, et al. Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime [J]. Photonics Res., 2018, 6(1): 24-29.

              ZHANG H F, ZHANG X Q, XU Q, et al. Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime [J]. Photonics Res., 2018, 6(1): 24-29.

    [106] [106] ZHOU S H, SHEN Z X, KANG R Y, et al. Liquid crystal tunable dielectric metamaterial absorber in the terahertz range [J]. Appl. Sci., 2018, 8(11): 2211.

              ZHOU S H, SHEN Z X, KANG R Y, et al. Liquid crystal tunable dielectric metamaterial absorber in the terahertz range [J]. Appl. Sci., 2018, 8(11): 2211.

    Tools

    Get Citation

    Copy Citation Text

    SHEN Yan-chun, WANG Jin-lan, WANG Qiao-lian, SHEN Zhi-xiong, HU Wei. Progress of liquid crystal based terahertz wavefront modulators[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 762

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 21, 2020

    Accepted: --

    Published Online: Oct. 27, 2020

    The Author Email: SHEN Yan-chun (cnsyc@126.com)

    DOI:10.37188/yjyxs20203507.0762

    Topics